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Abstract. We consider the flow in a porous medium of three fluids that do

not mix nor interchange mass. Under simplifying assumptions this is the case

for oil, water and gas in a petroleum reservoir. For a simple geometry, the
horizontal displacement of a pre-existent uniform mixture by another injected

mixture gives rise to a Riemann problem for a system of two conservation

laws. Such a system depends on laboratory-measured relative permeability
functions for each of the three fluids. For Corey models each permeability

depends solely on the saturation of the respective fluid, giving rise to systems
containing an umbilic point in the interior of the saturation triangle. It has

been conjectured that the structure of the Riemann solution in the saturation

triangle is strongly influenced by the nature of the umbilic point, which is
determined by the quadratic expansion of the flux function nearby. In 1987

it was proved that, for very general Corey permeabilities, umbilic points have

types I or II in Schaeffer&Shearer’s classification.
In the current work we find precisely the boundaries where the transition

occurs in the saturation triangle, which was not done in 1987. The novel tool

is a constructive method for determining type I.

1. Introduction. In this work, we classify a special hyperbolic singularity, called
umbilic point, which arises in state space for a class of conservation laws that de-
scribe oil recovery; the class is derived in Section 4. The umbilic point is classified
according to Schaeffer and Shearer scheme, [8], which applies to systems of two con-
servation laws with fluxes that are well approximated, in some sense, by quadratic
fluxes. In Appendix of [8] Schaeffer, Shearer, Marchesin and Paes-Leme, showed
that the umbilic point of strongly convex permeability models has type I or type
II. However, they did not determine parameters where the change from type I to
II occurs. In Section 3, we detect the transition by means of a new simple way to
identify type I singularities based on the quadratic expansion of the flux functions in
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the conservation laws about the umbilic point. The classification is given in Section
5 and depends on the sign of a quartic function of two variables. Surprisingly, the
quartic function turns out to be a product of four affine functions of two variables.
Therefore, the change of sign occurs on straight lines and the fluxes are type I inside
a small triangle in state space, and type II outside.

2. Background. Consider a 2×2 system of conservation laws in one space variable

∂

∂t
U +

∂

∂x
F (U) = 0, (1)

where −∞ < x < ∞, t ≥ 0, U = U(x, t) ∈ D, F : D → R2 is a C2 function and D
is an open set of R2. Equation (1) together with the initial conditions

U(x, 0) =

{
UL if x < 0
UR if 0 < x

(2)

are the so called Riemann problem.
Both (1) and (2) may be rescaled by (x, t) → (cx, ct) for c > 0. Therefore, the

solutions of (1) and (2) should depend only on ξ = x/t, thus, they are sequences of
constant states and two kinds of solutions: rarefactions and shocks.

A rarefaction, also called rarefaction fan, is a solution of

(DF (U)− ξI)Uξ = 0,

for ξ in an interval. If (1) is strictly hyperbolic the eigenvalues of DF (U) are
ordered, λ1(U) < λ2(U). Hence, assuming strictly hyperbolicity, there are two
kinds of rarefactions, each one associated to an eigenpair.

A shock is a discontinuous solution that moves with speed s along which U jumps
form a left state U− to a right state U+,

lim
x→st−

U(x, t) = U− , lim
x→st+

U(x, t) = U+,

and the well known Rankine-Hugoniot condition holds:

F (U+)− F (U−)− s (U+ − U−) = 0. (3)

There are only three kinds of relevant shocks in [8], nonetheless, we define four kinds
following [6, 7], which extended some results of [8].

Definition 2.1. A solution of (3) is a:
(i) slow shock iff λ1(U+) < s < λ1(U−) and s < λ2(U+);
(ii) fast shock iff λ2(U+) < s < λ2(U−) and λ1(U−) < s;
(iii) overcompressive shock iff λ2(U+) < s < λ1(U−).
(iv) crossing discontinuity iff λ1(U−) < s < λ2(U−) and λ1(U+) < s < λ2(U+).

The oriented integral curves of each eigenvector field form rarefaction curves in
state space. The rarefaction curves have the orientation of increasing eigenvalue.
The solutions of (3) for a fixed U− that satisfy any of the condition of Definition
2.1 form shock curves in state space.

We give a definition of umbilic point slightly different from the one given in [8]
by Schaeffer and Shearer.

Definition 2.2. Let F be a C2 function on an open set D ⊆ R2, F : D 7→ R2,
U 7→ F (U) and DF its derivative. Assume that DF has two equal eigenvalues and
is diagonalizable at U∗. If there exists a neighborhood N of U∗ such that DF has
distinct real eigenvalues for all U ∈ N \ U∗ then U∗ is an umbilic point of F .
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Instead of saying that U∗ is an umbilic point of Eq. (1) with flux F , we will say
just that U∗ is an umbilic point of F . (For a singularity where N intersects the
hyperbolic and elliptic regions see [2].) The following simplifications are assumed.

Simplification 2.3. Let F and U∗ be as in Definition 2.2, then:
(i) The flux F has no constant terms;
(ii) The umbilic point is the origin, U∗ = (0, 0);
(iii) The derivative DF (U∗) is the null matrix.

The Simplification 2.3 holds without loss of generality since: (i) constant terms
do not change the solution of conservation laws, thus they may be neglected; (ii)
performing the translation U → U − U∗ the umbilic point lies at the origin; (iii)
changing the inertial frame, (x, t) → (x − ξ∗t, t), where ξ∗ is the eigenvalue of
DF (U∗), the derivative becomes DF (U∗)− ξ∗I = 0.

The hypothesis H of [8] motivates the following definition.

Definition 2.4. Let F and U∗ be as in Definition 2.2 and G be the second order
Taylor expansion of F around U∗. If U∗ is an umbilic point of G then F is an
H-flux.

We remark that if U∗ is an umbilic point of the quadratic function G then it is
also an umbilic point of F . However, the inverse implication is false.

Henceforth, F will be an H-flux, G will be the second order Taylor expansion of
F (thus G is an H-flux too) and U∗ will be the umbilic point of F and G.

Remark 1. Since we assume the Simplification 2.3 has been made on F , G is an
homogeneous quadratic H-flux.

Schaeffer and Shearer in [8] classified generic H-fluxes depending on the number
and type of shock and rarefaction curves through the umbilic point. They did
so in two steps. First, they established four robust topological configurations for
homogeneous quadraticH-fluxes (see Theorem 2.7 below). Then, for non degenerate
homogeneous quadratic H-flux, they proved the higher order terms do not affect
the classification (see Theorem 2.10 below).

Palmeira and Marchesin, [6, 7], proved that higher order terms also do not affect
the topological behavior of the shock and rarefaction curves in a neighborhood of U∗

(not only through U∗) – see Theorem 2.11 below. This result arises in the context
of the Wave Manifold, see [4].

Definition 2.5. The fluxes G1 and G2 are equivalent if and only if there is a
constant invertible 2× 2 matrix M such that

G1 (U) = M−1G2 (MU) .

Lemma 2.6. Equivalence preserves the structure of the shock and rarefaction cur-
ves. That is, the mapping U 7→M−1U maps shock and rarefaction curves to shock
and rarefaction curves, respectively.

A version of the main result of Schaeffer and Shearer is presented in the following
Theorems 2.7 and 2.10.

Theorem 2.7. Every G is equivalent to the following normal flux

Q (u, v)
T

=

[
au2 + 2buv + v2

bu2 + 2uv

]
(4)
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with a 6= b2 + 1. There are four different robust configurations for the shock and
rarefaction curves of G through U∗, labeled from I to IV. The flux G has:

(i) type I if and only if a < 3
4b

2;

(ii) type II if and only if 3
4b

2 < a < b2 + 1;

(iii) type III if and only if b2 + 1 < a < Φ(b); 1

(iv) type IV if and only if Φ(b) < a.

Definition 2.8. The quadratic flux function G is degenerate if it is equivalent to
Q with a = 3

4b
2 or a = Φ(b).

We remark that if a = b2 + 1 then the Q flux has no umbilic point, rather it has
a straight line of points with just one real eigenvalue. Thus, if a = b2 +1, Q is not a
H-flux and no G may be equivalent to Q. (Schaeffer and Shearer define degenerate
Q instead of degenerate G; Q is degenerate also if a = b2 + 1.)

The point (i) of the following Definition is natural, the point (ii) will be useful:

Definition 2.9. A given F is classified depending on its corresponding G:
(i) if G has type I to IV then F has type I to IV, respectively;
(ii) if G is a border case between type I and type II (i.e., if G is equivalent to Q

with a = 3
4b

2) then F is of border-type I/II;

The classification of Schaeffer and Shearer depends on the shock and rarefaction
curves through U∗.

Theorem 2.10. If G is non degenerate, the shock and rarefaction curves of G
through U∗ are in one-to-one correspondence with shock and rarefaction curves of
F through U∗. Indeed every shock and rarefaction curve of F is tangent at U∗ to a
shock and rarefaction curve of G.

Despite the fact that the classification depends only on the shock and rarefaction
curves through U∗, there is a one-to-one correspondence with shock and rarefaction
curves of F around U∗. The following Theorem summarizes the stability results
from [6, 7].

Theorem 2.11. Shock and rarefaction curves near the umbilic point are structurally
stable under C3 perturbations of fluxes in the Whitney topology.

We remark that rarefactions curves are also structurally stable under C2 pertur-
bations of fluxes.

3. A constructive classification of type I fluxes. The work [8] provides the
construction for a normal flux equivalent to a given H-flux. Nevertheless, it is not
always practical to use directly this construction in order to obtain the normal flux
(4). The new Theorem 3.2 allows us to determine if a flux has type I.

For any G we have (recall Remark 1): (i) DG(U) is linear in u and v; (ii)
det(DG(U)) is a quadratic form in u and v. These facts motivate the following
definition.

Definition 3.1. For a given G as in Definition 2.4 we associate the constant sym-
metric matrix NG such that det (DG(U)) = UTNGU.

1Φ(b) is given implicitly by −32 b4 + b2
(

27 + 36 (a− 2) − 4 (a− 2)2
)

+ 4 (a− 2)3 = 0.
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Theorem 3.2. Let F , G and NG be as in Definitions 2.2, 2.4 and 3.1, then:
(i) F has type I if and only if det (NG) > 0;
(ii) F has border-type I/II if and only if det (NG) = 0;
(iii) F has neither type I nor border-type I/II if and only if det (NG) < 0.

Proof. The derivative of the normal flux Q from Equation (4) is

DQ(U) =

[
2au+ 2bv 2bu+ 2v
2bu+ 2v 2u

]
,

thus the matrix NQ associated to DQ is:

NQ =

[
4a− 4b2 −2b
−2b −4

]
.

Then det (NQ) = −16a+ 12b2, thus:
(i) Q has type I if and only if det (NQ) > 0;
(ii) Q has border-type I/II if and only if det (NQ) = 0;
(iii) Q has neither type I nor border-type I/II if and only if det (NQ) < 0.
If Q and G are equivalent then there exists an invertible constant matrix M such

that Q(U) = M−1G(MU) for all U ∈ R2, thus

DQ(U) = M−1DG(MU)M ⇒ det(DQ(U)) = det(DG(MU))⇔
⇔ UTNQU = UTMTNGMU ⇔ NQ = MTNGM ⇒
⇒ det(NQ) = det(MTNGM)⇔ det(NQ) = det2(M)det(NG).

Therefore, if G and Q are equivalent det(NQ) and det(NG) have the same sign.
Since F is classified depending on G, as in Definition 2.9, the proof is complete.

Remark 2. If G is non degenerate, Theorems 2.10 and 2.11 ensure that shock
and rarefaction curves around U∗ for F and G are topologically equivalent. If G
is degenerate, for instance, F is border-type I/II, then nothing is known about the
relation between these shock and rarefaction curves of F and G.

4. The general immiscible three-phase flow in porous media. In this section
we give a brief derivation of the model we studied, sometimes named Corey with
general power permeabilities, which arises in Petroleum Engineering. We consider a
one-dimensional, horizontal (i.e., with negligible gravitational effects), incompress-
ible flow in a homogeneous porous media filled with three immiscible phases (e.g.,
water, oil and gas) with no mass exchange between phases. The fraction of the
porous volume occupied by each phase is called saturation and is denoted by si, for
i ∈ {w, o, g}. (The subscripts w, o and g stand for water, oil and gas, respectively.)
Admitting no unfilled pore space and no other phase we have

∑
j sj = 1.

Definition 4.1. The domain of (sw, so) such that sw + so < 1, 0 < sw and 0 < so
is called the saturation triangle ∆.

We also define: φ, the porosity of the medium; ρi, the constant density of phase
i; v, total seepage velocity of all fluids; fi, fractional flow of phase i, so

∑
j fj = 1.

The mass conservation of each of the three phases is given by:

∂

∂t
(φρisi) +

∂

∂x
(ρivfi) = 0, for i ∈ {w, o, g}. (5)
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Assuming that v is a non zero constant, determined by boundary conditions, it is
possible to eliminate one equation and to nondimensionalize Eq. (5) to obtain

∂

∂t
si +

∂

∂x
fi = 0, for i ∈ {w, o},

sg = 1− sw − so and fg = 1− fw − fo.
(6)

The fractional flow is given by fi = mi∑
mi

where mi = bis
ai
i , ai > 1 and bi > 0, is

the mobility of each phase. Therefore, we have

fw(sw, so) =
bws

aw
w

bws
aw
w + bos

ao
o + bg(1− sw − so)ag

,

fo(sw, so) =
bos

ao
o

bws
aw
w + bos

ao
o + bg(1− sw − so)ag

.

(7)

We will study (1) with the flux function F : ∆→ R2, (sw, so) 7→ (fw, fo)
T

with fw
and fo as in Eq. (7) – see Definition 4.1.

5. Classification of the umbilic point for general immiscible three-phase
flow in porous media. In [3] and [8] it was proved that the system (6) with flux
(7) has an umbilic point at (sw, so) satisfying

dmw(sw)

dsw
=

dmo(so)

dso
=

dmg(sg)

dsg
.

We call α, β the coordinates of the umbilic point and γ = 1− α− β.
In Appendix of [8] Schaeffer, Shearer, Marchesin and Paes-Leme showed, in a

more general case, that the flux F of Eq. (7) is type I or II but they did not
determine the location of the border between I and II. The main result of our paper
(Theorem 5.2) is the classification of F depending on the position of the umbilic
point (α, β) on the saturation triangle. To do that we will use Theorem 3.2.

Expanding fw and fo of Eq. (7) around (α, β) up to second order, sw = u + α,
so = v + β, (sg = w + γ), and performing Simplification 2.3 we obtain a homoge-
neous quadratic H-flux that allows us to classify the flux F :

gw(u, v) =
qw (m̄o + m̄g)− qgm̄w

m̄2

u2

2
− qgm̄w

m̄2
vu− (qo + qg) m̄w

m̄2

v2

2
,

go(u, v) =− (qw + qg) m̄o

m̄2

u2

2
− qgm̄o

m̄2
vu+

qo (m̄w + m̄g)− qgm̄o

m̄2

v2

2
,

(8)

where:
m̄w = bwα

aw , m̄o = boβ
ao , m̄g = bgγ

ag ,
qw = A2

wbwα
aw−2, qo = A2

oboβ
ao−2, qg = A2

gbgγ
ag−2,

m̄ = m̄w + m̄o + m̄g, Ai =
√
ai(ai − 1) for i ∈ {w, o, g}.

For simplicity we write Aw = A, Ao = B and Ag = C. We define G(u, v) =

(gw(u, v), go(u, v))
T

where gw(u, v) and go(u, v) are given by Eq. (8). The following
triangle is used in the classification of F .

Definition 5.1. Let us define the triangle T in the plane (α, β) with vertices:(
AB

AB+BC , 0
)

,
(

0, AB
CA+AB

)
and

(
CA

BC+CA ,
BC

BC+CA

)
;

along the sides of the triangle ∆ in Fig. 1. The corresponding γ coordinates are
BC

AB+BC , CA
CA+AB and 0.
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T
(

0, AB
CA+AB

)
(

CA
BC+CA

, BC
BC+CA

)

(
AB

AB+BC
, 0

)
AB BC

CA

Figure 1. The triangle T inside of ∆ and the vertices of T as
centers of mass.

I
II II

II

β = 0

α = 0

γ = 0

Figure 2. The plane (α, β) and the classification on the triangle
∆ in type I and II. (Example for A2 = 6, B2 = 2 and C2 = 20.)

Assuming that A, B, C are all different, each straight line crosses each of the
three axes α = 0, β = 0 and γ = 0 once. The intersection points with the axes are
the same for each pair of straight lines (see Fig. 2). There exists a curious way to
compute T . Let us put masses on the vertices of ∆: (i) a mass BC at α = 1; (ii)
a mass CA at β = 1; (iii) a mass of AB at γ = 1; (see Fig. 1). Then, in order to
calculate the vertex of T that lies at one edge of ∆, we must swap the masses on
the vertices of that edge and then calculate the center of mass.

Theorem 5.2. The flux F of Eq. (7) has:
(i) type I if and only if (α, β) lies inside T ;
(ii) type II if and only if (α, β) lies outside T ;
(iii) border-type I/II if and only if (α, β) lies on the edges of T .
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Proof. We classify F using Theorem 3.2. The second order expansion of F is G in
Eq. (8). Straightforward calculations show the matrix NG is

NG =
1

2m̄3

 −m̄oqgqw qwm̄gqo − qgm̄wqo − m̄oqgqw

qwm̄gqo − qgm̄wqo − m̄oqgqw −qgm̄wqo

 .
and its determinant det(NG) is the product of the negative constant

−4A2B2C2α2β2γ2m̄6

qwqoqgm̄wm̄om̄g

by the product of four linear functions:

+BCα+ACβ −ABγ; +BCα−ACβ +ABγ;
−BCα+ACβ +ABγ; +BCα+ACβ +ABγ.

(9)

Therefore, the zero set of det(NG) is formed by four straight lines, on which F has
border-type I/II. Substituting any of α, β, γ by zero in (9) we find the vertices of
T . We may check the sign of det(NG) to prove that F has type I only inside of
T . Since in [8] it was proved that F has type I or II, it follows that F has type II
outside of T .

In the special case of equal mobilities, aw = ao = ag, A = B = C, the triangles
∆ and T have parallel edges, the vertices of T are (0, 1

2 ), ( 1
2 , 0) and ( 1

2 ,
1
2 ). The

case of expoent 2 is studied by Asakura in [1] and by Isaacson et al. in [5].

6. Conclusion. In this work we classify the singularities that arise from a model of
Petroleum Engineering. The model depends on parameters, ai, bi for i ∈ {w, o, g}.
The location of the singularity, the umbilic point, depends on the same parameters.
However, the subdivision of the saturation triangle in type I or type II umbilic
points depends only on the parameters A, B and C; i.e., on the mobility powers
aw, ao and ag, in a very geometrical way.
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