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Abstract. We focus on a system of two conservation laws representing a
large class of models relevant for petroleum engineering, the domain of which

possesses singular points. It has been conjectured that the structure of the

Riemann solution in the saturation triangle is strongly influenced by the nature
of the umbilic point. In the current work we show that features originally

related to umbilic points actually belong to a distinct point, the new Equal-

Speed Shocks point.
Even though the location of the umbilic point is known, for the first time,

we relate the umbilic point to a physical property, namely, the minimum of the

total mobility for any Corey model.

1. Introduction. We are interested in the study of injection problems for 2 × 2
systems of conservation laws; a survey may be found in [2, 4, 7, 12] and references
therein. The solution construction for the injection of water and gas is presented in
[2] for the case of quadratic Corey models.

We discuss the location of the umbilic point in the interior of the triangle and
the new “Equal-Speed Shocks” (ESS) point, which arises in these more general
non-symmetric models. Analyses on umbilic points were made in the last few years
[8, 9, 14]. The special case of quadratic Corey models is discussed in [1].

We consider models for reservoirs that may contain three fluids, for concreteness,
we call them water, gas, and oil; although they could be any three fluids that are
immiscible with each other. For simplicity, we assume that the three phases are
incompressible, that gravitational segregation and capillary effects are negligible,
and that there is no mass transfer among the phases. The flow occurs in one
dimension at constant injection rate and fixed proportion of injected fluids. The
mobility of each phase is assumed to be a convex function of its own saturation and
inversely proportional to the phase viscosity. The mathematical model consists of

2000 Mathematics Subject Classification. Primary: 35L65, 35L67; Secondary: 58J45, 76S05.
Key words and phrases. Conservation laws, Riemann problem, umbilic point, WAG injection,

petroleum engineering, flow in porous media, Corey permeability model.
This work was supported in part by: CAPES/FAPERJ Postdoc Grant E-26/102.474/2010,

DOE under Grant DE-FE0004832, Grant of the U. Wyoming WYDEQ49811FRTD, CNPq un-

der Grants 472923/2010-2, 301564/2009-4, and FAPERJ under Grants E-26/102.965/2011, E-
26/111.416/2010, E-26/110.337/2010.

415
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two conservation laws representing Darcy’s law combined with mass conservation
for two of the phases. The flow problem depends on two viscosity ratios and the
precise choice of mobilities. (The overall picture of solutions given in [2] is essentially
unchanged in the more general class of models treated in this work, see [5, 6].)

A Corey-type model loses strict hyperbolicity at an umbilic point. Models with-
out umbilic points have been considered for three-phase flow; see [7]. They yield
simple solutions for the injection problem. However, they are unrealistic because
immiscibility of the three phases seems to be related to loss of strict hyperbolic-
ity [3, 14, 16], i.e., either umbilic points or elliptic regions are present. Models with
umbilic points have complicated solutions, but are still well behaved mathemati-
cally; see [9, 12] for a review of their properties.

This work is organized as follows. In Sec. 2 the convex permeability models are
introduced; in Sec. 2.1.1 we give a brief review of rarefaction fans, shock waves
and properties of quadratic Corey models. Section 3 describes certain structures in
state space; in Sec. 3.1 we identify features of the umbilic point and in Sec. 3.2 we
describe curves with a certain equal shock speed property to the boundaries, the
intersection of which is the ESS point. Finally, the conclusions are in Sec. 4.

2. Mathematical model. Consider the flow of a mixture of three fluid phases
(which, for concreteness, are called water, gas and oil) in a thin, horizontal cylinder
of porous rock. Let sw(x, t), sg(x, t) and so(x, t) denote the respective saturations
at distance x along the cylinder, at time t. Because sw + sg + so = 1 and 0 ≤
sw, sg, so ≤ 1, the state space of the fluid mixture is the saturation triangle ∆; see
e.g. Fig. 1. In our analysis, we choose sw and sg as the two independent variables,
thus S := (sw, sg); the vertices of ∆ are W = (1, 0), G = (0, 1) and O = (0, 0).

2.1. Conservation laws. Three-phase flow in 1d at constant injected rate is gov-
erned by the non-dimensionalized system ∂S/∂t+ ∂F (S)/∂x = 0, or

∂sw
∂t

+
∂fw(sw, sg)

∂x
= 0, (1)

∂sg
∂t

+
∂fg(sw, sg)

∂x
= 0, (2)

representing conservation of water and gas. The flow functions fw(sw, sg) and
fg(sw, sg) are determined by the relative permeabilities of the three phases.

Although each fluid phase becomes immobile below an residual saturation, for
simplicity we assume that the relative permeabilities are strictly positive within
the saturation triangle. (In Engineering language, sw, sg, and so are “reduced
saturations”.) From Darcy’s law the fluxes are

fα(S) =
mα(S)

m(S)
, for α = w, g, o, where m := mw + mg + mo (3)

is the total mobility; mw, mg, mo represent the relative mobility of each phase.
Each mobility is a ratio between relative permeability and viscosity of the fluid, it
is described by the continuous function:

mα(S) :=
kα(S)

µα
, α = w, g, o, (4)

where µα is the given constant viscosity of each phase α.
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A Corey type model is defined by a set of mobilities mα(sα) that are nonde-
creasing continuous functions of their own saturation sα. In this work we focus on
convex Corey models, which obey the following restrictions.

Definition 2.1. A Corey model is said to be convex when the mobilities are
C1[0, 1] ∩ C2(0, 1) functions satisfying:

1. mα(sα) > 0 for sα ∈ (0, 1] and mα(0) = 0,
2. m′

α(sα) > 0 for sα ∈ (0, 1] and m′
α(0) = 0,

3. m′′
α(sα) ≥ 0 for sα ∈ (0, 1),

4. no pair of the quantities m′′
w(sw), m′′

g(sg), m′′
o(so) vanish simultaneously for

any point in the interior of the saturation triangle (0 < sw, sg, so < 1).

Remark 1. In the presence of nonzero residual saturations, one can easily formulate
an appropriate extension of Definition 2.1.

Remark 2. In this work, for the purpose of illustrating facts with figures, we use
the following mobilities:

mw(sw) = (sw)3.2857/1, mg(sg) = (sg)2.65/0.5, mo(so) = (so)5.8357/2,

based on a best fit for homogeneous porous media of the Corey-Brooks model, [4].

2.1.1. Basic solutions. Equations (1)–(2) have solutions that propagate as waves.
The Jacobian matrix of the fluxes is the key for rarefaction curves. The character-
istic speeds are the two eigenvalues of the Jacobian derivative matrix

J(S) :=
∂(fw(S), fg(S))

∂(sw, sg)
=
∂F (S)

∂S
, (5)

provided that these eigenvalues are real, in which case the smaller one is called
the slow-family characteristic speed λ s(sw, sg) and the larger one is called the fast-
family characteristic speed λ f(sw, sg). For the Corey model, both eigenvalues are
real and nonnegative for each state in the saturation triangle.

The self-similarity of solutions of a Riemann problem implies that if u(x, t) is
such a solution at a given time t, then u(αx, αt) is also a solution for any α > 0.
Centered rarefaction and shock waves are based on self-similarity.

System (1)–(2) has continuous solutions called slow- and fast-family rarefaction
waves. They arise by solving an ODE, namely,

{J(S)− ξ I}~r(S) = 0,
dS

dξ
= ~r(S),

where S(ξ), for ξ = x/t, is the profile of the rarefaction provided ξ is monotonic
increasing. Some integral curves appearing in the solution of Riemann problems
are plotted in Fig. 1.

This system also admits solutions that have jump discontinuities. The Hugoniot
locus of a point So, denoted as H(So), is given by all the points S that satisfy the
Rankine-Hugoniot (RH) condition:

F (S)− F (So) = σ(S − So), (6)

where σ = σ(So, S) is the velocity of the discontinuity, and the fluxes F (S) and
saturations S are given as before. (Notice that S belongs to H(So) if and only if So

belongs to H(S).) Admissibility of discontinuites for systems of conservation laws
such as (1)–(2) is discussed in [2].

Notice that if the RH condition between states Sa and So holds with a certain
speed σ, and it also holds for the same speed between states So and Sb, it is easy
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Figure 1. Integral curves; slow and fast families. The triple inter-
section is the umbilic point. Dots on integral curves are inflections,
arrows point in the increasing eigenvalue direction. (The specific
mobilities are in Remark 2.)

to see that the RH condition is satisfied between states Sa and Sb with the same
speed. This is the essence of the triple-shock rule [9]. The definition of σij as the
shock speed σ(Si, Sj) will be useful.

Theorem 2.2 (Triple-shock rule). Let the states S1, S2 belong to H(S0). If σ01 =
σ02 holds, then S1 belongs to H(S2) and the relations σ01 = σ02 = σ12 hold.

Proof. Define σ as σ01 = σ02. Subtract versions of equation (6) written for (S0, S1)
and for (S0, S2), obtaining F (S2) − F (S1) = σ(S2 − S1), which indicates that S1

belongs to H(S2) and σ12 is equal to σ.

The following variant of Theorem 2.2 has been used in several works appearing
in this conference.

Lemma 2.3. Let S0, S1, S2 be non-collinear states such that S1, S2 belong to H(S0)
and S1 belongs to H(S2). Then σ01 = σ02 = σ12 holds.

Proof. Let us express the RH relations of the involved states; we have

F (S1)− F (S0) = σ01(S1 − S0), F (S2)− F (S0) = σ02(S2 − S0),

F (S1)− F (S2) = σ12(S1 − S2). (7)

By subtracting (7.b) and (7.c) from (7.a), we obtain

0 = σ01(S1 − S0)− σ02(S2 − S0)− σ12(S1 − S2).

We subtract the trivial relation 0 = σ12(S1 − S0) − σ12(S2 − S0) − σ12(S1 − S2)
obtaining 0 = (σ01 − σ12)(S1 − S0)− (σ02 − σ12)(S2 − S0). Recalling that the sates
are non-collinear, we notice that the latter relation holds if and only if σ01 − σ12
and σ02 − σ12 are zero, which proves the lemma.

A system is called strictly hyperbolic if the characteristic speeds satisfy the in-
equality λ s(S) < λ f(S) everywhere; they are well studied [10, 11]. In three-phase
flow models there are points where the characteristic speeds coincide, which are
called coincidence points. Furthermore, in Corey models there are isolated coinci-
dence points where the Jacobian matrix is a multiple of the identity, i.e., umbilic
points.
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The quadratic Corey model is defined by the permeabilities kα(S) = s2α for
α = w, g, o. Such a model is well understood; in particular, the location and
characteristics of umbilic points are well known. There is a unique umbilic point
U = (uw, ug) in the interior of ∆, with uo = 1− uw − ug, the coordinates of which
are

uα = µα/(µw + µg + µo), for α = w, g, o.

Such a point satisfies the following.

Property 2.4. For the quadratic Corey model, the characteristic speeds are equal
to 2 at the interior umbilic point.

Three other umbilic points lie on the vertices of the saturation triangle.

Property 2.5. For the quadratic Corey model, the shock speed from the interior
umbilic point to vertices of the triangle are equal to 1.

3. Structures in the saturation triangle for convex Corey models. When
two of the permeabilities in (4) cease to be scalar multiples of the same convex
function, the umbilic point gives rise to two points: the first one is still an umbilic
point, and Property 2.4 holds, and at the second one, only Property 2.5 holds. It is
because of the shock speed equality that the latter point will be called Equal-Speed
Shocks to vertices or ESS.

3.1. The umbilic point location. Inmiscible three-phase flow models are typi-
cally non-strictly hyperbolic, except in the model in [7]. Lemma 3.1 follows from
results in [14] for the case where the gravity force is not active. (In [8, 15] there are
shorter proofs.)

Lemma 3.1. Consider a convex Corey permeability model, see Definition 2.1.
There is always a single point U in the interior of the saturation triangle satis-
fying m′

w(uw) = m′
g(ug) = m′

o(uo), (8)

which is the unique umbilic point in the interior of the triangle. It has characteristic
speed λ(U) = m′

w(uw)/m(U).

An important feature of the models considered is the following: from properties
(3) and (4) of Definition 2.1, one can see that the Hessian for the total mobility:(

m′′
w + m′′

o m′′
o

m′′
o m′′

g + m′′
o

)
(9)

is a positive definite matrix. Hence the motivation of the following result.

Corollary 1. For a convex Corey type model, the total mobility has a single ex-
tremum in the interior of the triangle, which occurs at the umbilic point. The
extremum is a minimum.

Proof. Equating to zero the partial derivatives of m in (3.b) relatively to sw and
sg implies m′

w = m′
o as well as m′

g = m′
o; then Lemma 3.1 guarantees that this

extremum occurs at the single umbilic point. Thus from the positive definiteness of
(9) we obtained that this extremum is the minimum.

Remark 3. Darcy’s law says that the total flow rate of a fluid mixture is propor-
tional to the pressure gradient; the proportionality coefficient is (minus) the total
mobility. Corollary 1 implies that maximum pressure gradient is needed to displace
the fluid mixture at saturations given by the umbilic point, for a given total flow
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rate. In other words the umbilic point gives the saturation proportion for which
each of the three fluids hinders maximally the flow of the other two. (Total flow is
minimal for a specific pressure gradient.)

We will call m′
w(sw) the sensitivity of the water mobility to water saturation.

The first equality in (8), m′
w(sw) = m′

g(sg), defines the equal water-gas sensitivity
curve, which can be parametrized either as a function of sw or sg; it contains U and
O. Similarly we can define equal water-oil and gas-oil sensitivity curves. See the
three dashed curves in Fig. 2. (In the absence of gravitational force these curves
were called two-phase-like-flow sets in [14].)

Let us summarize properties of the equal sensitivity curves. First of all, recall
that m′

w = m′
g implies ∂m/∂sw = ∂m/∂sg, for brevity we call ∂m such a value, thus

the Jacobian matrix at any point of the equal water-gas sensitivity curve is

J(S) =
1

m2

(
m′

wm−mw∂m −mw∂m
−mg∂m m′

wm−mg∂m

)
.

Along the curve one eigenvalue is λ = m′
w/m with eigenvector (1, −1) (in Cartesian

coordinates), which is parallel to the side so = 0.
Moreover, the total mobility is minimum on the equal sensitivity curve in the

direction of such eigenvector. Indeed, ∇m · (1, −1) = ∂m/∂sw − ∂m/∂sg is zero on
the sensitivity curve, which turns out to be at a minimum because the Hessian in
(9) is positive definite. (Analogous statements hold for other sensitivity curves.)

U

H

O

WG Hwg

Hwo

Hgo

Figure 2. Location of umbilic and ESS points. Solid curves are
Hugoniot loci from pure saturations. The umbilic location is given
from similar dashed curves.

Remark 4. For non-convex Corey models we have the following facts. A converse
to Lemma 3.1 holds: an umbilic point in the interior of the triangle satisfies (8).
Instead of Corollary 1, every extremum of the total mobility is a coincidence point;
such a point is umbilic provided that the second derivatives of two of the mobilities
do not vanish simultaneously there. (The extrema are not necessarily unique and
do not need to be minima.)

3.2. The equal-speed shocks curves. Let us consider the vertex O = (0, 0), and
look for points S = (sw, sg) in ∆ satisfying RH relation (6):

fw(S) = σsw, fg(S) = σsg; (10)
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where we used the fact that water and gas saturations for pure oil are zero, water
and gas permeabilities are also zero. For the same reason the sides sw = 0 and
sg = 0 are part of the Hugoniot locus of O. A third solution appears equating σ in
Eqs. (10) leading to

σ(S, O) =
fw(S)

sw
=

fg(S)

sg
; (11)

points S satisfying the last equality in (11) form a curve inside ∆.
We denote by Hi(O) the locus in ∆ that satisfies Eq. (11), i.e., the “interior

Hugoniot locus” from O; the Hugoniot locus of the vertex O is given by Hi(O) and
the sides WO and GO. Since for any state S on Hi(O), H(S) intersects both sides
WO and GO, see [5], from Lemma 2.3 we have the following

Claim 3.2. All points in the internal Hugoniot locus Hi(O) satisfy the triple-shock
rule between O and points on the boundary WO; they also satisfy the triple-shock
rule between O and points on the boundary GO.

We define Hi(O), from equality (11), as the equal water-gas shock speed curve
(as we will show presently), which can be parametrized either as a function of sw
or sg. Actually, since each mα(sα) is an increasing continuous function, its inverse
is well defined and increasing. With aid of the constraint sw + sg + so = 1, it is
easy to see that points (sw, sg) satisfying the second equality in relation (11) can
be parametrized by so, i.e., there exist smooth functions

Hw, Hg : [0, 1]→ [0, 1] s.t. (Hw(so), Hg(so)) ∈ Hi(O), (12)

for all so ∈ [0, 1]; notice that H ′
w and H ′

g are negative because when so increases
sw + sg decreases. Similarly we can define equal water-oil and gas-oil shock speed
curves; Hi(G) and Hi(W).

The intersection of Hi(W), Hi(G) and Hi(O), is denoted by H := (hw, hg), with
ho = 1− hw − hg, and satisfies

σ =
fw(H)

hw
=

fg(H)

hg
=

fo(H)

ho
. (13)

This is the ESS point (Equal-Speed Shocks); the shock speeds from H to any
vertex have the same value σ. Notice from relations (13) that H satisfies σ =
Σαfα(H)/Σαhα = 1. Defining Hwg, Hwo, Hgo as the intersection of the internal
Hugoniot Hi(O), Hi(G), Hi(W) with the sides WG, WO, GO respectively (see
Fig. 2), we notice that the triple-shock rule (see Theorem 2.2) holds with speed one
for seven points, namely,

σ(A, B) = 1, with A, B ∈ {H, W, G, O, Hwg, Hwo, Hgo},
since each point belongs to the Hugoniot locus of the three vertices.

4. Concluding remark. The internal Hugoniot loci of the vertices give rise to the
ESS point, while the equal sensitivity curves give rise to the umbilic point.

As in [15] one can follow the ordering of increasing directions of fast rarefaction
curves near the boundary, see Fig. 1, and notice that there is an orientation reversal,
thus a quadratic expansion of the fluxes about the umbilic point shows that in our
case it must be classified as Type I or II, see Fig. 3 and [13].
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422 PABLO CASTAÑEDA, DAN MARCHESIN AND FREDERICO FURTADO

Type I Type II

Figure 3. In the saturation triangle there are two possible umbilic
point types for Corey permeability models with different viscosities.
We represent the two possibilities. The rarefaction behavior around
the umbilic type is sketched in the small insets. (Lighter curves
represent slow family, darker curves represent fast family.)
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