CÁLCULO DIFERENCIAL E INTEGRAL II

Laboratorio 4

Otoño 2022

Función logaritmo natural. Funciones inversas

- 1. A partir de la gráfica de $y = \ln x$ bosqueja la gráfica de las siguientes funciones, proporcionando el dominio de cada una de ellas:
 - (a) $y = \ln(1/x)$.
 - (b) $y = \frac{1}{\ln x}$.
 - (c) $y = \ln |x|$.
 - (d) $y = |\ln x|$.
- 2. Proporciona el dominio de cada función y luego encuentra su derivada:
 - (a) $f(x) = (\ln x) \ln (\sec x)$.
 - (b) $f(x) = \frac{1}{\ln x} + \ln(1/x)$.
 - (c) $f(x) = \ln\left(\sqrt{-\ln x}\right)$.
 - (d) $f(x) = \ln^2 \left(\frac{3x+2}{x^4} \right)$.
 - (e) $f(x) = \int_{x}^{x^3} \ln(x^2 1) \sqrt{\cos(t) + 1} dt$.
- 3. Usa derivación implícita para calcular dy/dx, si $y=\ln(xy^2).$
- 4. Determina las siguientes integrales:
 - (a) $\int_{e}^{e^2} \frac{dx}{x \ln x}$. (Observa que $\ln e = 1$.)
 - (b) $\int \frac{dx}{\sqrt{x} 2x}.$
 - (c) $\int \frac{1}{x + x \operatorname{sen}(\ln(x))} dx.$
 - (d) $\int (1 + \ln x) \cot(x \ln x) dx.$
 - (e) $\int_1^8 \frac{dt}{3+\sqrt{t+8}}$. Utiliza la sustitución $u=3+\sqrt{t+8}$.
- 5. Utiliza derivación logarítmica para encontrar la derivada de la función

7

$$f(x) = \frac{\ln^2 x}{(x^2 + 1)^{5/2} \sqrt{2 + \sin x}}.$$

6. (a) Prueba que si $t \ge 1$, entonces $\frac{1}{t} < \frac{1}{\sqrt{t}}$, y de aquí obtén que

$$0 \le \ln x \le 2\sqrt{x} - 2$$
, para toda $x \ge 1$.

- (b) Concluye que $\lim_{x \to \infty} \frac{\ln x}{x} = 0$.
- 7. Determina una función diferenciable $f: \mathbb{R} \to \mathbb{R}$ que sea par, con f(0) = 0 y tal que

$$\ln(1+f(x)) = \int_0^{x^2} \frac{\operatorname{sen}(t)}{1+f(\sqrt{t})} dt, \text{ para todo } x \in \mathbb{R}.$$

8. Sea $L:(0,\infty)\to\mathbb{R}$ una función tal que

$$L(xy) = L(x) + L(y)$$

У

$$\lim_{t \to 0} \frac{L(1+t)}{t} = 1. \quad (*)$$

Prueba que $L(x) = \ln x$, para todo x > 0.

Sugerencia: Prueba que L(1) = 0 y usa (*) para demostrar que L'(x) = 1/x.

- 9. En cada inciso encuentra un intervalo en el que f tenga una inversa (halla un intervalo en el que f' > 0 o f' < 0). No es necesario encontrar f^{-1} .
 - (a) $f(t) = t^4 + 2t^2 + 1$.
 - (b) $f(x) = \int_{x^2}^x \ln t \ dt$, 0 < x < 1.
- 10. Sea $f(x) = x^3 + x 1$.
 - (a) Muestra que f es diferenciable y creciente en \mathbb{R} .
 - (b) Si f^{-1} denota la inversa de f, calcula $\frac{d}{dx}f^{-1}(9)$. (Nota que f(2)=9.)