
Cálculo Diferencial e Integral I

Ejercicios para el Laboratorio 3

Funciones a trozos

1. Para la función cuya gráfica está abajo determina los límites laterales en x=0,1,2,3,4. Obtén todos los números reales a en el intervalo [1,4] para los cuales el límite en x=a existe.

2. Sea

$$f(x) = \begin{cases} -x^2 + 3 & \text{si } -3 < x < -1, \\ 2x^2 & \text{si } -1 \le x \le 1, \\ 3x - 1 & \text{si } x > 1. \end{cases}$$

- (a) Grafica f(x),
- (b) Determina los siguientes límites

$$\lim_{x \to 1^+} f(x), \quad \lim_{x \to 1^-} f(x), \quad \lim_{x \to -1^+} f(x), \quad \lim_{x \to -1^-} f(x), \quad \lim_{x \to -3^+} f(x),$$

- (c) ¿En qué puntos de $\mathrm{Dom}(f)$ existe el límite?
- (d) Determina explícitamente la función g(x) = 3f(2x-2)+4, grafícala y determina en qué puntos de Dom(g) existe el límite.

Existencia límites

- 1. De las siguientes afirmaciones, indica cuál siempre es cierta (argumenta), cuál puede ser cierta (da un ejemplo donde sea cierta y otro donde no lo sea) y cuál nunca puede ser cierta (argumenta).
 - $\bullet \lim_{x \to 3} f(x) = f(3).$

- Si $\lim_{x \to -7} f(x) = -2$ entonces $\lim_{x \to -7} f^3(x) = 8$.
- Si $\lim_{x \to 5} f(x) = 8$ entonces $\lim_{x \to 5} 1/f(x) = 1/8$.
- Si $\lim_{x \to 5^+} f(x) = 4$ y $\lim_{x \to 5^-} f(x) = 8$ entonces $\lim_{x \to 5} f(x) = 6$.
- Si $\lim_{x\to 0} \frac{f(x)}{x} = 1$ entonces f(0) = 0.
- Si $\lim_{x\to 0} \frac{f(x)}{x} = 1$ entonces $\lim_{x\to 0} f(x)$ existe y es igual a 0.
- 2. Supón que $\lim_{x\to 4} f(x) = 0$ y $\lim_{x\to 4} g(x) = -3$. Calcula, si existen, los límites en a = 4 de g(x) + 3, $(g(x))^2$, xf(x), $\frac{g(x)}{f(x) - 1}$.

Demostración formal de límites

3. Encuentra el valor de $\delta > 0$ que hace que para toda x que satisface $0 < |x - x_0| < \delta$ se cumpla que $|f(x) - L| < \epsilon$ si:

•
$$f(x) = \sqrt{19 - x}$$
, $x_0 = 10$, $L = 3$ y $\epsilon = 1$,

•
$$f(x) = 120/x$$
, $x_0 = 24$, $L = 5$ y $\epsilon = 1/2$.

Cálculo de límites

4. Calcula los límites de las siguientes funciones en el punto indicado. Primero realiza un análisis cualitativo para determinar existencia o posible valor del límite,

$$\bullet \lim_{x \to 4} \frac{4x - x^2}{2 - \sqrt{x}}$$

•
$$\lim_{x \to 3} \frac{x - 27}{x^{1/3} - 3}$$

$$\bullet \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

•
$$\lim_{t \to -2} \frac{-3 + \sqrt{-2t + 5}}{\sqrt{11 + t} - 3}$$

•
$$\lim_{x \to 3^-} \frac{|x^2 - 4x + 4|}{x^2 - 2x}$$

•
$$\lim_{x \to -3} \frac{x+3}{\sqrt{x^2+7}-4}$$

•
$$\lim_{x \to 3} \frac{x - 27}{x^{1/3} - 3}$$
 • $\lim_{x \to 0} \frac{x + 3}{\sqrt{x^2 + 7} - 4}$ • $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{x}$ • $\lim_{h \to 1} \frac{\sqrt{b + 2(h - 1)} - \sqrt{b}}{h - 1}$, $b > 0$