Primer Examen Departamental

Cálculo Diferencial e Integral II Departamento de Matemáticas, ITAM 18 de marzo de 2022

Tipo A

Nomb	ore	:				CU:				
1(a	<u>) </u>	1(b)	2(a)	2(b)	3	4(a)	4(b)	5	Total	
1 (6		-(~)	_(0)	_(~)		-(-)	-(~)		10001	

Duración: 20:00 a 22:00 hrs

Instrucciones:

- 1. Contesta con claridad y limpieza.
- 2. Simplifica tus respuestas en la medida de lo posible.
- 3. Muestra el trabajo completo y detallado.
- 4. Una respuesta sin justificación se considerará no contestada.

Cálculo Diferencial e Integral II Primer Examen Departamental "Tipo A" 18 de marzo de 2022

1. Encuentra la derivada de la función en cada inciso:

(a)
$$F(x) = \int_{e}^{e^{x^2}} \frac{1}{\ln(\sqrt{t})} dt$$
, $x \neq 0$. Simplifica la respuesta.

(b)
$$G(x) = \frac{1}{(4^{1/x} + 1)^x}, x > 0.$$

2. Sea $f(x) = x^3 \ln x, x > 0$.

- (a) Halla los valores de x para los que f es creciente.
- (b) Si f^{-1} es la función inversa de f, obtén $(f^{-1})'(3e^9)$.

3. Calcula
$$\int_{1}^{8} \frac{dt}{3 + \sqrt{t+8}}.$$

4. (a) <u>Usando el cambio de variable</u> $u = \operatorname{senh}^{-1} x$ demuestra que

$$\int_{0}^{\mathrm{senh}(t)} \sqrt{x^2 + 1} \, dx = \int_{0}^{t} \cosh^2(u) du, \quad t \in \mathbb{R}.$$

(b) Usa la parte (a) para demostrar que

$$\int_{0}^{\mathrm{senh}(t)} \sqrt{x^2 + 1} \, dx = \frac{\mathrm{senh}(2t)}{4} + \frac{t}{2}.$$

5. Sea f continua en [a,b]. Demuestra que

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx.$$

Cada pregunta tiene el siguiente valor:

1(a)	1 (b)	2 (a)	2 (b)	3	4 (a)	4 (b)	5
1.5	1.5	1.25	1.25	1.5	1.0	0.75	1.25