Cálculo Diferencial e Integral III. Otoño 2020 Examen final departamental

Instrucciones:

- i) Escribe tu NOMBRE y CU en la primera hoja de las respuestas.
- ii) No se permite usar calculadoras.
- iii) Cada pregunta vale lo mismo (1/8 cada una).
- iv) Tendrás 10 minutos adicionales para preparar y enviar las respuestas a tu profesor, por lo que debes enviar las soluciones a más tardar a las 10:40.

Duración: 2 horas 30 minutos

- 1. Encuentra el valor de $\iiint_D (z+x^2+y^2)dxdydz$, donde $D=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2\leq 4,\ z\in[0,3]\}.$
- 2. Sea a > 0, y sea D_a la región en el plano xy acotada por un triángulo con vértices (0,0), (a,0), y (a,2a). Encuentra el valor de a tal que $\iint_{D_a} (x+2y) dx dy = a^3 + \frac{1}{8}$.
- 3. ¿Cuál es el volumen del sólido en el espacio xyz acotado por el paraboloide $z=-x^2-y^2+1$ y el plano z=0?
- 4. Sea D la región en el plano xy encerrada por las curvas $y=x^2,\ y=2x$. Sea $f:\mathbb{R}^2\to\mathbb{R}$ continua. Escribe $\iint_D f(x,y)dxdy$ como una integral iterada de las siguientes formas:

a)
$$\int_a^b \left(\int_{\phi_1(x)}^{\phi_2(x)} f(x,y) dy \right) dx$$
, b) $\int_c^d \left(\int_{\psi_1(y)}^{\psi_2(y)} f(x,y) dx \right) dy$.

- 5. Sea D la región en el plano xy encerrada por el paralelogramo con vértices (0,0), (-1,2), (3,1) y (2,3). Encuentra el valor de $\iint_D (2x-y)dxdy$
- 6. Sea $D = \{(x,y) \in \mathbb{R}^2 \mid 1 \le x^2 + y^2 \le 4, \quad x \le 0, \quad y \le 0\}$. Encuentra el valor de $\iint_D (y e^{x^2 + y^2}) dx dy$.
- 7. Sea $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $\mathbf{F}(x,y) = (e^{x-1} + xy, y^3 + 2xy)$.
 - (a) Muestra que \mathbf{F} es invertible en algún abierto U que contiene al punto (1,1).
 - (b) Si **G** es la inversa de **F** restringida a U, y notando que $\mathbf{F}(1,1)=(2,3)$, calcula $D\mathbf{G}(2,3)$.
- 8. Usa los multiplicadores de Lagrange para encontrar los extremos de f(x, y, z) = x y + 2z sujeta a las restricciones $x^2 + y^2 = 6$, -2x + z = 2.

1