Cálculo Diferencial e Integral III. Primavera 2021

Laboratorio 11 : Teoremas de la Función Implícita e Inversa

- 1. El punto $(x_0, y_0, z_0) = (-2, -1, 2)$ satisface la ecuación $x^2 xy + z^2y^2 6 = 0$.
 - (a) Usa el teorema de la función implícita para mostrar que la variable x puede ser escrita de manera única en términos de las variables y, z para (y, z) en alguna vecindad de (-1, 2), x en algún intervalo abierto que contiene a -2.
 - (b) Encuentra una representación explícita para x en términos de y, z de la forma x = g(y, z) con g de clase C^1 en algún abierto que contiene a (-1, 2) y tal que -2 = g(-1, 2).
- 2. Sea $f: \mathbb{R} \to \mathbb{R}$ de clase C^1 y tal que f(1) = 2. Dado el sistema de ecuaciones

$$f(x-2z) + yz - 4 = 0 (1)$$

$$yf(z) + x - 7 = 0, (2)$$

encuentra condiciones en f'(1) para que el sistema se pueda resolver (no de forma explícita necesariamente) de manera única para x y para z en términos de y con y en algún intervalo abierto que contiene a 2, x en algún abierto que contiene a 3, z en algún abierto que contiene a 1.

- 3. Sea $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $\mathbf{F}(x,y) = (e^x \cos(y), e^x \sin(y))$.
 - (a) Muestra que \mathbf{F} es localmente invertible alrededor de cualquier punto en \mathbb{R}^2 , pero no es invertible en todo \mathbb{R}^2 .
 - (b) Notar que $\mathbf{F}(0,\pi/4) = (1/\sqrt{2},1/\sqrt{2})$ y que existen abiertos U,V que contienen a $(0,\pi/4)$ y a $(1/\sqrt{2},1/\sqrt{2})$ respectivamente tales $\mathbf{F}:U\to V$ es invertible. Si \mathbf{G} es la inversa de dicha función, calcula $\mathrm{D}\mathbf{G}(1/\sqrt{2},1/\sqrt{2})$ sin calcular explícitamente la función \mathbf{G} .
- 4. Sea $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $\mathbf{F}(x,y) = (x^2 xy, y + xy)$. Dibuja en el plano xy el conjunto de puntos (x_0, y_0) para los cuales el teorema de la función inversa garantiza que \mathbf{F} es inyectiva en algún abierto que contiene a (x_0, y_0) .
- 5. Dado el sistema de ecuaciones

$$xy^2 + xzu + yv^2 = 3 (3)$$

$$u^{3}yz + 2xv - u^{2}v^{2} = 2, (4)$$

- (a) Muestra que este sistema define de manera implícita funciones de clase C^1 u = u(x, y, z), v = v(x, y, z), para todo (x, y, z) en algún abierto que contiene a (1, 1, 1), con 1 = u(1, 1, 1) y 1 = v(1, 1, 1).
- (b) Encuentra el valor de $\frac{\partial v}{\partial u}(1,1,1)$.

- 6. El punto $(x_0, y_0, z_0) = (1, -1, 2)$ está en las superficies S_1 y S_2 en el espacio xyz descritas por $x^2(y^2 + z^2) = 5$, $(x z)^2 + y^2 = 2$ respectivamente. Muestra que cerca de dicho punto, la curva formada por la intersección de S_1 con S_2 puede ser descrita por un par de ecuaciones de la forma z = f(x), y = g(x) con f y g de clase C_1 .
- 7. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ de clase C^1 y tal que f(0,0)=0. Encuentra condiciones sobre $\frac{\partial f}{\partial x}(0,0)$ y $\frac{\partial f}{\partial y}(0,0)$ que permitan resolver de manera única la ecuación f(f(x,y),y)=0 para la variable y como función de x, con x en una vecindad de 0, y y en una vecindad de 0.