Instituto Tecnológico Autónomo de México

Departamento de Matemáticas Cálculo Diferencial e Integral I

Laboratorio 3 **12 de febrero 2021**

- 1. Si $\lim_{x\to c} (f(x))^3 = 8$ y $\lim_{x\to c} (5f(x) 2g(x)) = 8$, justifica con detalle (usando las propiedades de los límites) que $\lim_{x\to c} g(x)$ existe y calcúlalo.
- 2. Encuentra $\delta > 0$ tal que $|x 3| < \delta \implies \left| \sqrt{1 + x} 2 \right| < 5$ para $x \in \left(\frac{1}{2}, \infty\right)$.
- 3. Usando la definición prueba que:

a)
$$\lim_{x \to a} (2x - 3) = 2a - 3$$

b)
$$\lim_{x \to 1} \frac{2}{3x-1} = 1$$

b)
$$\lim_{x \to a} (2x - 3) = 2$$

c) $\lim_{x \to \frac{3}{4}} \sqrt{1 - x} = \frac{1}{2}$

d)
$$\lim_{x\to 2} -x^2 + x + 2 = 0$$