CÁLCULO DIFERENCIAL E INTEGRAL II

Laboratorio 1

Otoño 2020

La integral definida. Teorema del valor medio para integrales.

1. Evalúa la integral $\int_0^1 \sqrt{x}\,dx$ como el límite de una suma de Riemann, usando la partición de [0,1] en donde

$$x_k = c_k = \frac{k^2}{n^2}$$

y, correspondientemente,

$$\Delta x_k = x_k - x_{k-1} = \frac{k^2}{n^2} - \frac{(k-1)^2}{n^2} = \frac{2k-1}{n^2}.$$

2. En cada inciso argumenta si en el intervalo dado la función es: (i) continua, (ii) acotada, (iii) integrable:

(a)
$$f(x) = \begin{cases} x^2, & x \in [-1, 0) \\ 5, & x = 0 \\ -2, & x \in (0, 1] \end{cases}$$
 en $[-1, 1]$.

(b)
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
 en $[-10\pi, 10\pi]$.

(c)
$$f(x) = \begin{cases} \frac{1}{x}, & 0 < x \le 1 \\ 0, & x = 0 \end{cases}$$
 en $[0, 1]$.

- 3. Calcula $\int_{-1}^{1} |2x+1| dx$.
- 4. Determina $\int_{-2}^{a} |x| \ dx$. Analiza los casos $a \leq 0$ y a > 0.
- 5. Prueba que $\frac{x^6}{\sqrt{2}} \leq \frac{x^6}{\sqrt{1+x^2}} \leq x^6,$ si $x \in [0,1]$. Concluye que

$$\frac{1}{7\sqrt{2}} \le \int_0^1 \frac{x^6}{\sqrt{1+x^2}} \, dx \le \frac{1}{7}.$$

6. Demuestra que si f es integrable en [a, b], entonces

$$\left| \int_{a}^{b} f(x) \ dx \right| \leq \int_{a}^{b} |f(x)| \ dx.$$

Sugerencia: $-|f(x)| \le f(x) \le |f(x)|$.

- 7. Sea $f:[1,3]\to\mathbb{R}$ continua. Supón que $\int_1^3f(x)\,dx=4$. Prueba que existe $c\in[1,3]$ tal que f(c)=2.
- 8. Sabiendo que $\int_{-1}^{8} 3\sqrt{x+1}\,dx=54$, encuentra un número real c que satisfaga la conclusión del teorema del valor medio.
- 9. Sean $f:[a,b]\to\mathbb{R}$ una función continua y $g:[a,b]\to\mathbb{R}$ una función integrable no negativa. Demuestra que existe $c\in(a,b)$ tal que

$$\int_a^b f(x)g(x) dx = f(c) \int_a^b g(x) dx.$$

Sugerencia: para el caso $\int_a^b g(x) \, dx \neq 0$, encuentra cotas inferior y superior para el cociente $\int_a^b f(x)g(x) \, dx/\int_a^b g(x) \, dx$ y luego utiliza el TVI.