Instituto Tecnológico Autónomo de México Departamento de Matemáticas

Cálculo Diferencial e Integral I

Primavera 2020

Laboratorio 3

- 1. Sean f,g funciones reales de variable real. Discuta la veracidad o falsedad de las siguientes afirmaciones:
 - (a) Si existir $\lim_{x\to a} f(x)$ y no existir $\lim_{x\to a} g(x)$, entonces puede existir $\lim_{x\to a} (f(x)+g(x))$.
 - (b) Si existiran $\lim_{x\to a} f(x)$ y $\lim_{x\to a} (f(x)g(x))$, entonces necesariamente existe $\lim_{x\to a} g(x)$.
- 2. Sean f, g, h funciones de dominio $D \subset \mathbb{R}$ y a un punto de acumulación de D. Demuestre que si, en alguna vecindad $V_{\delta_1}(a)$ de a, tenemos $f(x) \leq h(x) \leq g(x)$ para todo $x \in (V_{\delta_1}(a) \setminus \{a\}) \cap D$, y $\lim_{x \to a} f(x) = l = \lim_{x \to a} g(x)$, entonces $\lim_{x \to a} h(x) = l$.
- 3. Sean f, g dos funciones y a un punto de acumulación de $D = D_f \cap D_g$. Demuestre que si $\lim_{x \to a} f(x) = 0$ y existe $\delta_1 > 0$ tal que g es acotada en $V_{\delta_1}(a) \cap D_g$, entonces $\lim_{x \to a} f(x)g(x) = 0$.
- 4. Sean f y g funciones definidas en D y $a \in \mathbb{R}$ un punto de acumulación de D. Demuestre que si $\lim_{x\to a} f(x) = l_1$, $\lim_{x\to a} g(x) = l_2$ y $l_1 < l_2$, entonces existe $\delta > 0$ tal que, para todo $x \in D$, si $0 < |x-a| < \delta$, entonces f(x) < g(x).
- 5. Calcule, si existieran, los siguientes límites, justificando el cálculo o la no existencia del límite.

(a)
$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x^2 - 1}$$

(b)
$$\lim_{x \to 0} \left[x^2 \left(1 - \cos \frac{1}{x} \right) \right]$$

(c)
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

(d)
$$\lim_{x \to 4} \frac{\frac{1}{4} - \frac{1}{x}}{4 - x}$$

(e)
$$\lim_{x\to 0} \frac{|2+x|-|2-x|}{x}$$