Cálculo Diferencial e Integral I

Laboratorio 14 - Repaso General

Primavera 2019 - ITAM

1. Calcula:

a)
$$\lim_{x \to 0} \frac{\csc(2x)}{\cot(3x)}$$

b)
$$\lim_{x \to 1^+} \frac{\sin(1-x^2)}{|1-x|}$$

c)
$$\lim_{h \to 0} \frac{\sin(\pi + h)}{2h + h^2}$$

d)
$$\lim_{x\to 0} \frac{\sin(1-\cos(x))}{x^2}$$

e)
$$\lim_{x \to \infty} x^2 \left(\cos \left(\frac{1}{x} \right) - 1 \right)$$

- 2. a) Supón que $f'(x) = \sec(x)$. Calcula: $\left(f\left(\frac{1}{x}\right) \right)'$ en $x_0 = \frac{1}{\pi}$
 - b) Supón que f(0) = 1, f'(0) = 2, g(1) = 3 y que g'(1) existe. Determina el valor de g'(1) para que: $(g^2 \circ f^3)'(0)$ sea igual a 144.
- 3. Determine las ecuaciones de las <u>dos</u> rectas tangentes L_1 y L_2 a la gráfica de la elipse: $x^2 + 4y^2 = 36$ que pasan por el punto $P_0(12,3)$
- 4. Una partícula se mueve sobre la parábola $4y = x^2 + 2x$. Determine las <u>coordenadas</u> del punto sobre la gráfica en el que la tasa de cambio de la abscisa y la ordenada son iguales.
- 5. Sea $f:[a,b] \to \mathbb{R}$ continua en [a,b] y <u>dos</u> veces diferenciable en (a,b). Supón que $f''(x) \neq 0 \ \forall x \in (a,b)$. Prueba que f admite a lo más un punto crítico estacionario (f'(c) = 0)
- 6. Usa el TVM para probar: Si $|x| < \frac{\pi}{2}$ y $|y| < \frac{\pi}{2}$ entonces: $|\sin(y) \sin(x)| \le |y x| \le |\tan(y) \tan(x)|$
- 7. Sea $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x + \sin(x)$. Prueba que f es ESTRICTAMENTE CRECIENTE. (Sugerencia: Sean a < b en \mathbb{R} . El TVM te permite concluir que $f(a) \leq f(b)$. Examina tu prueba con cuidado y concluye que en realidad: f(a) < f(b))

8. Traza con todo detalle la gráfica de f si:

a)
$$f(x) = \frac{2x}{x^2 + 1}$$

$$f(x) = \frac{x+1}{\sqrt{x}}$$

c)
$$f(x) = \sqrt{x^2(2-x^2)}$$

d)
$$f(x) = \frac{1}{x^2 + x}$$
 Sugerencia: $\left(\frac{1}{x^2 + x} = \frac{1}{x} - \frac{1}{x + 1}\right)$

- 9. Determina todos los valores extremos de $f(x)=\cos(2x)-2\cos(x)$ en el intervalo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
- 10. Un triángulo equilátero de lado l tiene uno de sus lados sobre el eje "x". Determina el área <u>máxima</u> y las <u>dimensiones</u> de un rectángulo inscrito cuya base este sobre el eje "x" (DIBUJA)
- 11. Determina la linearización de f(x) alrededor de x_0 si:

a)
$$f(x) = (x+1)^{1/2}$$
 y $x_0 = 0$

b)
$$f(x) = \frac{1}{1 + x^{1/2}}$$
 y $x_0 = 1$

c)
$$f(x) = \sqrt{1 + \cos(x)} \text{ y } x_0 = \frac{\pi}{2}$$