CÁLCULO DIFERENCIAL E INTEGRAL II

Laboratorio 13

Primavera 2019

Aproximación polinomial y teorema de Taylor. Residuo y estimación del error de aproximación

- 1. Obtén el polinomio de Taylor de grado n para las siguientes funciones f(x) en x_0 :
 - (a) $f(x) = \text{senh}(x), x_0 = 0.$
 - (b) $f(x) = x^2 x 2$, $x_0 = -1$.
- 2. Obtén el polinomio de Taylor de grado 2 para las siguientes funciones f(x) en x_0 :
 - (a) $f(x) = 3 + \int_2^{2x} e^{t^2 4} dt$, $x_0 = 1$.
 - (b) $f(x) = \begin{cases} \frac{\sin x}{x}, & \text{si } x \neq 0 \\ 1 & \text{si } x = 0. \end{cases}$, $x_0 = 0$.
- 3. A partir del polinomio de Taylor de grado n para e^x en $x_0 = 0$ determina el polinomio de Taylor de grado 3 de las siguientes funciones f(x) en $x_0 = 0$:
 - (a) $f(x) = e^{-2x}$.
 - (b) $f(x) = e^{-x^2}$.
 - (c) $f(x) = e^{\sin x}$.
- 4. Obtén el polinomio de Taylor de grado 3 para $f(x) = \tan^{-1}(x)$ en $x_0 = 0$, y úsalo para aproximar el valor de $\pi/4$.
- 5. (a) Demuestra que si |x| es pequeño y $0 < \alpha \le 1$, entonces

$$(x+1)^{\alpha} \approx 1 + \alpha x + \frac{\alpha (\alpha - 1)}{2} x^{2}.$$

- (b) Usa esta aproximación para estimar $\sqrt{1.4}$.
- 6. Aproxima el valor de $e^{1/2}$ con un error menor que 0.001.
- 7. Determina la exactitud de la aproximación

$$\cos(x) \approx 1 - \frac{x^2}{2} + \frac{x^4}{24}$$

sobre el intervalo [-1, 1].

8. Usando el teorema de Taylor, demuestra que

$$\left| e^{-x} - \left(1 - x + \frac{x^2}{2} \right) \right| < \frac{1}{6}, \quad \forall x \in [0, 1].$$

9. Sea $f:\mathbb{R}\to\mathbb{R}$ una función de clase $C^5\left(\mathbb{R}\right)$ con polinomio de Taylor de grado 5 en $x_0=1$ dado por

$$P_{5,1}(x) = \frac{1}{2}x^2\left(1 - \frac{x^2}{2}\right).$$

Determina $f^{(k)}(1)$, para $k=0,1,2,\ldots,5$, e indica justificando si f tiene o no un extremo local en el punto 1.

10. Sea $I \in \mathbb{R}$ un intervalo abierto y sea $f \in C^2(I)$. Usa la fórmula de Taylor para demostrar que, para cualquier $a \in I$,

$$f''(a) = \lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2}.$$