CÁLCULO DIFERENCIAL E INTEGRAL II

Laboratorio 8

Primavera 2019

Integración por partes. Integrales trigonométricas

1. Encuentra las siguientes integrales:

(a)
$$\int \frac{\ln(x)}{x^2} dx$$
.

- (b) $\int e^{\sqrt{x}} dx$. (Primero haz una sustitución y luego integra por partes.)
- (c) $\int \operatorname{sen}(\ln x) dx$.

(d)
$$\int_0^1 \frac{x^3}{(1+x^2)^3} dx$$
.

2. Utilizando una integración por partes demuestra la siguiente fórmula de reducción de grado

$$\int \operatorname{sen}^{n}(x) \, dx = -\frac{1}{n} \operatorname{sen}^{n-1}(x) \cos(x) + \frac{n-1}{n} \int \operatorname{sen}^{n-2}(x) \, dx, \quad n = 1, 2, 3, \dots$$

3. Demuestra que la función $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ dos veces diferenciable tal que

$$f''(x) = -\frac{3}{x^4} \cosh\left(\frac{1}{x}\right) - \frac{1}{x^5} \operatorname{senh}\left(\frac{1}{x}\right)$$

para todo $x\in\mathbb{R}\setminus\{0\},\,f'(1)=\cosh(1)$ y $\lim_{x\to\infty}\,f(x)=1$ está definida por

$$f(x) = -\frac{1}{x} \operatorname{senh}\left(\frac{1}{x}\right) + \cosh\left(\frac{1}{x}\right).$$

4. (a) Demuestra que

$$\int f^{-1}(x) dx = x f^{-1}(x) - \int f(y) dy, \text{ con } y = f^{-1}(x).$$

- (b) Utilizando el inciso anterior, determina: (i) $\int \cos^{-1}(x) dx$, (ii) $\int \log_2(x) dx$.
- 5. Encuentra las siguientes integrales:
 - (a) $\int \sin^5(x) dx$.
 - (b) $\int \operatorname{sen}^{3}(x) \cos^{2}(x) dx$.
 - (c) $\int \tan^5(x) \sec^4(x) dx.$
 - (d) $\int \tan^3(x) \sec^5(x) dx.$
 - (e) $\int_0^{2\pi} \sqrt{\frac{1-\cos(x)}{2}} \, dx$.

- 6. Demuestra que para $m, n \in \mathbb{N}$:

 - (a) $\int_0^{2\pi} \operatorname{sen}(mx) \cos(nx) dx = 0.$ (b) $\int_0^{2\pi} \operatorname{sen}(mx) \operatorname{sen}(nx) dx = \begin{cases} 0, & \text{si } n \neq m \\ \pi, & \text{si } n = m. \end{cases}$