Cálculo Diferencial e Integral I
Departamento de Matemáticas, ITAM
Segundo Examen Departamental
Sábado 5 de mayo del 2018

Nombre y cu: __

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3a</th>
<th>3b</th>
<th>4a</th>
<th>4b</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8a</th>
<th>8b</th>
<th>Total</th>
</tr>
</thead>
</table>

JUSTIFICA CON DETALLE TUS RESPUESTAS
LEE CON CUIDADO LOS ENUNCIADOS DE LOS PROBLEMAS
NO se permiten libros, apuntes, calculadoras, celulares o tabletas
Usa el reverso de cada hoja si es necesario
Tiempo: 2:00 horas

..
1. [1 pto.] Calcula \(\lim_{{x \to 0}} \frac{\text{sen}^2(3x)}{9x^2 + 2x^3} \).
2. [1 pto.] A partir de la definición obtén $f'(0)$ si

$$f(x) = \begin{cases}
0, & \text{si } x = 0; \\
\frac{\cos(x) - 1}{\tan(x)}, & \text{si } x \neq 0.
\end{cases}$$
3. Sea \(h(x) = (3f \circ g^2)(x) \). Supón que \(g(1) = g'(1) = g''(1) = 2, f'(4) = 5 \) y \(f''(4) = 6 \).

 a) [0.5 ptos.] Calcula \(h'(1) \).
 b) [0.5 ptos.] Calcula \(h''(1) \).
4. a) [0.5 ptos.] Enuncia con cuidado el Teorema del Valor Medio (TVM).

b) [1 pto.] Sean \(f, g : [a, \infty) \rightarrow \mathbb{R} \) continuas en \(x = a \) y diferenciables en \((a, \infty)\). Supón que \(f(a) \leq g(a) \) y que \(f'(c) \leq g'(c) \) para todo \(c \in (a, \infty) \). Prueba que \(f(x) \leq g(x) \) para todo \(x \in (a, \infty) \). *Incluye las hipótesis necesarias.*
5. [1 pto.] La elipse $x^2 + 4xy + 12y^2 = 25$ tiene dos rectas tangentes paralelas a $x + 2y - 5 = 0$. Determina los puntos de tangencia y la ecuación correspondiente de cada recta.
6. [1 pto.] Un punto P se mueve sobre la curva $y = \sqrt{x^2 - 4}$ en el plano xy donde $x \geq 2$. La abcisa de P se desplaza a razón de 5 unidades por segundo. ¿Con qué rapidez cambia la ordenada de P cuando $x = 3$?
7. [2 ptos.] Trazar con detalle y precisión la gráfica de la función

\[f(x) = \frac{x^2 + 6x + 6}{x + 1}. \]

Incluye toda la información relevante: dominio, imagen, intervalos de crecimiento y decrecimiento, intervalos de concavidad y convexidad. Coordenadas de todos los puntos críticos y asintotas.
8. Definimos $f : [0, 4] \rightarrow \mathbb{R}$ como sigue:

\[
\begin{align*}
 &x^2 + 2x, \quad \text{si } x \in [0, 1); \\
 &x^2 - 6x + 8, \quad \text{si } x \in [1, 4].
\end{align*}
\]

a) [0.5 ptos.] Prueba que f es continua en $[0, 4]$.

b) [1 pto.] Determina todos los valores extremos de f en $[0, 4]$.
Hoja extra