

Cálculo Diferencial e Integral I Departamento de Matemáticas, ITAM Segundo Examen Departamental Otoño 2016

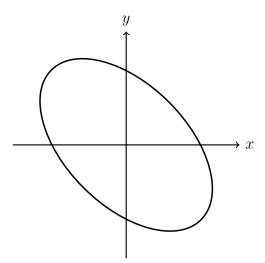
Nombre y cu:												
1	2a	2b	2c	2d	3	4	5a	5b	5c	6	7	Total
JUSTIFICA CON DETALLE TUS RESPUESTAS LEE CON CUIDADO LOS ENUNCIADOS DE LOS PROBLEMAS NO se permiten libros, apuntes, calculadoras, celulares o tabletas Hojas extras al final Tiempo: 2:00 horas												

1. [0.5 ptos.] Calcula el límite $\lim_{\theta \to 0} \frac{\sin \theta}{\theta + \tan \theta}$ (no usar regla de L'Hôpital).

- 2. Calcula según se indica. No es necesario simplificar.
 - a) [0.5 ptos.] Derivada de $y = \sqrt{3x^2 2x}(2x + 1)^3$.

b) [0.5 ptos.] Derivada de $y = \tan\left(\frac{2x}{\cos(2-3x^2)}\right)$.

c) [0.5 ptos.] $(g^2 \circ f + g \circ f^2)'(3)$ si f(3) = f'(3) = 1 y g(1) = g'(1) = 4. Nota: g^2 es el cuadrado de la función y \circ denota composición.


d) [0.5 ptos.] Ecuación de la recta tangente a la gráfica de la función $y=x\cos x$ en $(\pi,-\pi).$

3. [1.0 ptos.] Sea $f(x) = x + \sqrt{|x-2|}$. Usa la definición de derivada para determinar si f es diferenciable o no en x=2.

4. [1.0 ptos.] Determina el máximo y el mínimo global de la función $f(x) = x + \sqrt{|x-2|}$ en el intervalo [-2,6]. **Nota**: no es necesario repetir los cálculos del problema 3.

- 5. Supón que $f:[0,1]\to\mathbb{R}$ es una función continua en [0,1] y diferenciable en (0,1). Además, f(0)=1 y $f'(x)\geq 2$ para todo x en (0,1).
 - a) [1.0 ptos.] Usa el TVM para probar que $f(x) \ge 1 + 2x$ para todo x en [0, 1].
 - b) [0.5 ptos.] Usa el TVI para probar que existe al menos una c en (0,1) tal que f(c)=2.
 - c) [0.5 ptos.] Usa el teorema de Rolle para probar que a lo $m\acute{a}s$ hay una c en (0,1) tal que f(c)=2.

6. [1.5 ptos.] Usa diferenciación implícita para determinar las coordenadas del punto más alto y del punto más bajo en la elipse $x^2 + xy + y^2 = 1$.

- 7. [2.0 ptos.] Sea $f(x) = \frac{1}{x^3} \frac{1}{x}$. Contesta los siguientes incisos en el orden dado. Los incisos deben estar claramente marcados en tu respuesta. Si algún elemento no existe dilo explícitamente con la justificación adecuada.
 - a) da el dominio de f.
 - b) da los cruces con los ejes y simetría con respecto al eje y o con respecto al origen (si alguna) de f.
 - c) calcula primera y segunda derivada de f.
 - d) da los intervalos donde f es estrictamente creciente (\nearrow) o estrictamente decreciente (\searrow).
 - e) da los intervalos donde f es convexa (\smile) o cóncava (\smallfrown).
 - f) da los puntos críticos y extremos locales de f.
 - g) da los puntos de inflexión de f.
 - h) detalla comportamiento asintótico, si alguno.
 - i) dibuja la gráfica de f. Tu gráfica, además de bien etiquetada, debe exhibir claramente los atributos que decides en los incisos anteriores.

Hoja extra

Hoja extra