Cálculo Diferencial e Integral 1

Laboratorio 12

Repaso general, Primera parte

Primavera 2018 - ITAM

1. Calcula:

a)
$$\lim_{x \to 0} \frac{1}{x csc(x)}$$

b)
$$\lim_{h \to 0} \frac{1 + \cos(\pi + h)}{h}$$

c)
$$\lim_{x\to 0} \frac{\tan(x) - \sin(x)}{x^2 \sin(x)}$$

2. Calcula directamente de la definición:

a)
$$f(x) = \frac{1}{1 + \frac{1}{x}}$$
 y $x_0 = 1$

b)
$$f(x) = \sqrt{4 + \sqrt{x}}$$
 y $x_0 = 25$

- 3. Determina a y b de tal modo que $P_0=(1,1)$ pertenece a la curva $4x^2+ay^2=b$ y que la recta normal a través de P_0 sea 4y-3x=1
- 4. Prueba que la recta normal a través del punto $(x_0, \sqrt{4-x^2})$ pasa por el origen $\forall x_0 \in (-2,2)$ DIBUJA
- 5. Prueba que si $-\pi/2 < a < b < \pi/2$ entonces $|b-a| \leq |tan(b) tan(a)|$
- 6. Prueba que si $f:[0,2]\to\mathbb{R}$ es continua en [0,2], diferenciable en (0,2), $f(2)=3\ y\ f'(c)\ge 2\ \forall c\in(0,2).$ Prueba que f tiene una única raíz (TVM+TVI)

7. Prueba que la elipse: $9x^2+4y^2=25$ y la hipérbola: $16y^2-9x^2=20$ tienen tangentes perpendiculares en los puntos en común