Por autor

Artículos de investigación en publicaciones internacionales arbitradas.

(Nota: aquí sólo aparecen artículos de la facultad actual del ITAM, si busca otro artículo consúltelo en el siguiente enlace: fecha de publicación)


Aguilar Villegas Juan Carlos

Aguilar, J. C. (2015). Higher-order Newton–Cotes rules with end corrections. Applied Numerical Mathematics88, 66-77. ISSN:0168-9274

doi:10.1016/j.apnum.2014.10.004

Aguilar, J. C., & Chen, Y. (2008). High-Order Quadrature Rules for Acoustic Scattering Calculations. Int. J. Contemp. Math. Sciences3(2), 71-82.

http://www.m-hikari.com/ijcms-password2008/1-4-2008/aguilarIJCMS1-4-2008.pdf

Aguilar, J. C. (2008). High-order corrected trapezoidal quadrature rules for functions with a logarithmic singularity on a circle. Int. J. Contemp. Math. Sciences3(23), 1133-1140.

http://www.m-hikari.com/ijcms-password2008/21-24-2008/aguilarIJCMS21-24-2008.pdf

Aguilar, J. C. (2007). An Unconditionally A-Stable Method for Initial Value Problems Based on Simpson’s Rule. In Int. Math. Forum (Vol. 2, No. 56, pp. 2771-2779).

http://www.m-hikari.com/imf-password2007/53-56-2007/aguilarIMF53-56-2007.pdf

Aguilar, J. C., & Goodman, J. B. (2005). An efficient interpolation algorithm on anisotropic grids for functions with jump discontinuities in 2-D. Applied numerical mathematics55(2), 137-153.

doi:10.1016/j.apnum.2005.02.001

Aguilar, J. C., & Chen, Y. (2005). High-order corrected trapezoidal quadrature rules for the Coulomb potential in three dimensions. Computers & Mathematics with Applications49(4), 625-631.

doi:10.1016/j.camwa.2004.01.018

Aguilar, J. C., & Chen, Y. (2002). High-order corrected trapezoidal quadrature rules for functions with a logarithmic singularity in 2-D. Computers & Mathematics with Applications44(8-9), 1031-1039.

doi:10.1016/S0898-1221(02)00212-2


Bengochea Cruz Abimael

Burgos-García, J., Bengochea, A., & Franco-Pérez, L. (2022). The spatial Hill four-body problem I—An exploration of basic invariant sets. Communications in Nonlinear Science and Numerical Simulation108, 106264.

Bengochea, A., Garcia-Chung, A., & Pérez-Chavela, E. (2022). Zero–Hopf bifurcations in Yu–Wang type systems. The European Physical Journal Special Topics231(3), 413-421.

Bengochea, A., García-Azpeitia, C., Pérez-Chavela, E., & Roldan, P. (2022). Continuation of relative equilibria in the n–body problem to spaces of constant curvature. Journal of Differential Equations307, 137-159.

Barrera, C., Bengochea, A., & García-Azpeitia, C. (2022). Comet and Moon Solutions in the Time-Dependent Restricted (n+ 1)-Body Problem. Journal of Dynamics and Differential Equations34(2), 1187-1207.

Bengochea, A. &  Lara, R.(2021). A restricted four-body problem for the eight figure choreography. Regular and Chaotic Dynamics 26, 222-235.

Bengochea, A., Galán-Vioque, J., & Pérez-Chavela, E. (2021). Families of Symmetric Exchange Orbits in the Planar (1+ 2 n)-Body Problem. Qualitative theory of dynamical systems20(2), 1-24.

Bengochea, A., Hernández-Garduño, A., & Pérez-Chavela, E. (2021). New families of periodic orbits in the 4-body problem emanating from a kite configuration. Applied Mathematics and Computation398, 125961.

Burgos-Garcia, J., & Bengochea, A. (2017). Horseshoe orbits in the restricted four-body problem. Astrophysics and Space Science362(11), 212.

https://link.springer.com/article/10.1007/s10509-017-3193-x


Bosch Giral Carlos 

Bosch, C., García, C. L., Gilsdorf, T. E., Wulschner, C. G., & Vera, R. (2021). Eventually constant intertwining linear maps between complete locally convex spaces. Italian Journal of Pure and Applied Mathematics, (46), 147–163

Bosch, C., García, C. L., Gilsdorf, T., Gómez-Wulschner, C., & Vera, R. (2017). Fixed points of set-valued maps in locally complete spaces. Fixed Point Theory and Applications2017, 1-11.

Bosch, C., Cabo, M., Charalambous, N., García, C. L., Gómez-Wulschner, C., Pastor, G., & Reyes, A. (2016). Finding the Middle Ground Bisectors in p-Geometry. Journal for Geometry and Graphics20(1), 023-032

Bosch, C., García, C. L., Garibay-Bonales, F., Gómez-Wulschner, C., & Vera, R. (2015). Ekeland's variational principle and critical points of dynamical systems in locally complete spaces. Annals of Functional Analysis6(4), 107-113.

http://projecteuclid.org/euclid.afa/1435764005

Bosch, C., & Leal, R. (2014). LOCAL COMPLETENESS, LOWER SEMI CONTINUOUS FROM ABOVE FUNCTIONS AND EKELAND’S PRINCIPLE. Bull. Korean Math. Soc51(2), 437-442.

Bosch, C., Gilsdorf, T. E., & Gómez-Wulschner, C. (2011). Mackey first countability and docile locally convex spaces. Acta Mathematica Sinica, English Series27(4), 737-740.

doi:10.1007/s10114-011-8540-1

Bosch, C., & Reyes-Heroles, R.(2011) Pareto Optimal Partitions for a Particular Welfare Function.International Journal of Mathematical Analysis, 5(45-48),  2395–2402

Bosch, C., & Garcia, A. (2010). Local completeness and Pareto optimization. Nonlinear Analysis: Theory, Methods & Applications73(4), 1098-1100.

Bosch, C., Garcıa, A., Gómez-Wulschner, C., & Hernández-Linares, S. (2010). Equivalents to Ekeland’s variational principle in locally complete spaces. Sci. Math. Japn72, 283-287.

http://www.jams.or.jp/notice/scmjol/2010.html

Bosch, C., Garcia, A., & Garcia, C. L. (2007). An extension of Ekeland's variational principle to locally complete spaces. Journal of mathematical analysis and applications328(1), 106-108.

doi:10.1016/j.jmaa.2006.05.012

Bosch, C., Garcıa, C. L., Garybay-Bonales, F., Gómez-Wulschner, C., & Vera, R. (2006). Locally Complete Spaces, Regularity, and the Banach Disk Closure Property. In International Mathematical Forum (Vol. 1, No. 8, pp. 351-357).

http://www.m-hikari.com/imf-password/5-8-2006/boschIMF5-8-2006.pdf

Bosch, C., Gilsdorf T. ,and Gómez-Wulschner C., and Vera R. (2002). Local Completeness of Ip(E),1<=p< infinity. International Journal of Mathematics and Mathematical Sciences (Vol.31, No. 11, pp. 651-657).

doi:10.1155/S0161171202109033

Bosch Giral C., García A., and Gilsdorf T. (2002). Some Hereditary Properties of Iinf(E) from E. International Mathematical Journal, Vol.2, No. 11, pp. 1061-1066.

http://www.m-hikari.com/z2002.html

Bosch, C., & Kučera, J. (2002). Sequential completeness and regularity of inductive limits of webbed spaces. Czechoslovak Mathematical Journal52(2), 329-332.

doi:10.1023/A:1021726628164

Bosch, C., & García, A. (2000). Banach-Mackey, locally complete spaces, and ℓp, q-summability. International Journal of Mathematics and Mathematical Sciences23(10), 675-679

doi:10.1155/S0161171200002209


Breña Medina Victor 

Villar-Sepúlveda, E., Aguirre, P., & Breña-Medina, V. F. (2023). A Case Study of Multiple Wave Solutions in a Reaction-Diffusion System Using Invariant Manifolds and Global Bifurcations. SIAM Journal on Applied Dynamical Systems22(2), 918-950.

https://epubs.siam.org/doi/full/10.1137/22M1474709

Champneys, A. R., Al Saadi, F., Breña–Medina, V. F., Grieneisen, V. A., Marée, A. F., Verschueren, N., & Wuyts, B. (2021). Bistability, wave pinning and localisation in natural reaction–diffusion systems. Physica D: Nonlinear Phenomena416, 132735.

https://doi.org/10.1016/j.physd.2020.132735

Pantoja-Hernández, J., Breña-Medina, V. F., & Santillán, M. (2021). Hybrid reaction–diffusion and clock-and-wavefront model for the arrest of oscillations in the somitogenesis segmentation clock<? A3B2 show [editpick]?>. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(6), 063107.

Quiroz-Juárez, M. A., Jiménez-Ramírez, O., Vázquez-Medina, R., Breña-Medina, V., Aragón, J. L., & Barrio, R. A. (2019). Generation of ECG signals from a reaction-diffusion model spatially discretized. Scientific reports, 9(1), 19000.

Avitabile, D., Bren͂a, V. F., & Ward, M. J. (2018). Spot dynamics in a reaction-diffusion model of plant root hair initiation. SIAM Journal on Applied Mathematics78(1), 291-319.

arXiv:1703.02608 y bioRxiv:114876

Moctezuma, J. C., Breña-Medina, V., Nunez-Yanez, J. L., & McGeehan, J. P. (2016). Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations. International Journal of Computer and Information Engineering, 8(7), 1281-1284.

Bren͂a--Medina, V. F., Avitabile, D., Champneys, A. R., & Ward, M. J. (2015). Stripe to spot transition in a plant root hair initiation model. SIAM Journal on Applied Mathematics, 75(3), 1090-1119.

Breña-Medina, V., & Champneys, A. (2014). Subcritical Turing bifurcation and the morphogenesis of localized patterns. Physical Review E, 90(3), 032923.

Bren͂a--Medina, V., Champneys, A. R., Grierson, C., & Ward, M. J. (2014). Mathematical modeling of plant root hair initiation: Dynamics of localized patches. SIAM Journal on Applied Dynamical Systems, 13(1), 210-248.

Sánchez-Garduño, F., & Breña-Medina, V. F. (2011). Searching for spatial patterns in a pollinator–plant–herbivore mathematical model. Bulletin of mathematical biology, 73, 1118-1153.

Sánchez‐Garduño, F., & Breña‐Medina, V. F. (2008, February). Spatio‐temporal dynamics of a three interacting species mathematical model inspired in physics. In AIP Conference Proceedings (Vol. 978, No. 1, pp. 115-134). American Institute of Physics.


Caetano de Oliveira Contreras Vladimir

Caetano, V., Hinojosa, G., & Valdez, R. (2022). Hausdorff Dimension Varies Continuously on Equivalent Dynamically Defined Wild Knots. Bulletin of the Brazilian Mathematical Society, New Series53(2), 443-460.


Castañeda Rivera Pablo 

Castañeda, P., & Berres, S. (2023) Bifurcation of solutions through a contact manifold in bidisperse models. Frontiers in Applied Mathematics and Statistics9, 1199011.

https://www.frontiersin.org/articles/10.3389/fams.2023.1199011/full

Núñez-López, M., Zepeda-Tello, R., Castañeda, P., Skolnick, S., Meza, R., & Hernández-Ávila, M. (2023). Implementation of mitigation measures and modeling of in-hospital dynamics depending on the COVID-19 infection status. In Mathematical Modelling, Simulations, and AI for Emergent Pandemic Diseases (pp. 175-198). Academic Press.

https://www.sciencedirect.com/science/article/pii/B9780323950640000038

 

Tang, J., Castaneda, P., Marchesin, D., & Rossen, W. R. (2022, October). Foam-Oil Displacements in Porous Media: Insights from Three-Phase Fractional-Flow Theory. In ADIPEC. OnePetro.

https://onepetro.org/SPEADIP/proceedings-abstract/22ADIP/4-22ADIP/D042S195R003/513111

Castañeda, P., Marchesin, D., & Furtado, F. (2022). Universality of Riemann solutions in porous media. Boletín de la Sociedad Matemática Mexicana28(1), 1-21.

https://doi.org/10.1007/s40590-021-00398-0

Castañeda, P. (2020). Embedded delta shocks. Heliyon6(6), e04152.

https://www.sciencedirect.com/science/article/pii/S2405844020309968

Tang, J., Castañeda, P., Marchesin, D., & Rossen, W. R. (2019). Three‐phase fractional‐flow theory of foam‐oil displacement in porous media with multiple steady states. Water Resources Research, 55 (12): 10319–10339.

https://doi.org/10.1029/2019WR025264

Castañeda, P., (2018) "Explicit construction of effective flux functions for Riemann solutions", Springer Proceedings in Mathematics & Statistics 236: 273-284.

https://link.springer.com/chapter/10.1007/978-3-319-91545-6_22

https://doi.org/10.1007/978-3-319-91545-6_22

Castañeda, P., & Furtado, F. (2016). The role of sonic shocks between two-and three-phase states in porous media. Bulletin of the Brazilian Mathematical Society, New Series47(1), 227-240.

DOI: 10.1007/s00574-016-0134-1

Berres, S., & Castañeda, P. (2016). Identification of shock profile solutions for bidisperse suspensions. Bulletin of the Brazilian Mathematical Society, New Series47(1), 105-115.

DOI: 10.1007/s00574-016-0125-2

Castañeda, P., Abreu, E., Furtado, F., & Marchesin, D. (2016). On a universal structure for immiscible three-phase flow in virgin reservoirs. Computational Geosciences20(1), 171-185.

http://link.springer.com/article/10.1007/s10596-016-9556-5

Matos, V., Castaneda, P., & Marchesin, D. (2014). Classification of the umbilic point for general immiscible three-phase flow in porous media. Fourteenth International Conference devoted to Theory, Numerics and Applications of Hyperbolic Problems 2012, Padova, Italia. AIMS Applied Mathematics Vol. 8: 791-799.

https://www.aimsciences.org/book/AM/volume/Volume%208

 

Castaneda, P., Furtado, F., & Marchesin, D. (2014). On singular points for convex permeability models,”. Proc. of Hyp2012, AIMS Series on Appl. Math8, 415-422. Fourteenth International Conference devoted to Theory, Numerics and Applications of Hyperbolic Problems 2012, Padova, Italia.

https://www.aimsciences.org/book/AM/volume/Volume%208

Fiedler, B., & Castaneda, P. (2012). Rainbow meanders and Cartesian billiards. São Paulo Journal of Mathematical Sciences6(2), 247-275.

https://doi.org/10.11606/issn.2316-9028.v6i2p247-275

Castaneda, P., Marchesin, D., & Bruining, J. (2012). The dynamics of chemical reactors in porous media. Advances in Differential Equations17(7-8), 725-746.

http://dx.doi.org/10.57262/ade/1355702974


 

Chávez Hernández María Victoria

Cervantes-Sanmiguel, K. I., Chavez-Hernandez, M. V., & Ibarra-Rojas, O. J. (2023). Analyzing the trade-off between minimizing travel times and reducing monetary costs for users in the transit network design. Transportation Research Part B: Methodological173, 142-161.

Chávez Hernández, M. V., Juárez Valencia, L. H., & Ríos Solís, Y. Á. (2019). Penalization and augmented Lagrangian for OD demand matrix estimation from transit segment counts. Transportmetrica A: Transport Science15(2), 915-943.

Juérez, L. H., & Chávez, M. V. (2015). , O-D Matrix Adjustment for Transit Networks by Conjugate Gradient Iterations. Investigación Operacional36(2).


Espinosa Armenia Ramón 

Espinosa R. (1999). A Qualitative method for Multicriteria Decision Aid. Investigación Operativa, Vol.8, pp. 77-86.

http://www-2.dc.uba.ar/alio/io/pdf/claio98/paper-5.pdf


 

Fernández Román Leobardo

Fernández, L., & Puga, I. (2019). On semi-Kelley Continua. Houston Journal of Mathematics45(1), 307-315.

 


Figueroa Gutiérrez Ana Paulina 

Figueroa, A. P., Montellano-Ballesteros, J. J., & Olsen, M. (2023). Partition of regular balanced c-tournaments into strongly connected c-tournaments. Discrete Mathematics346(7), 113459.

Ábrego, B. M., Fernández-Merchant, S., Figueroa, A. P., Montellano-Ballesteros, J. J., & Rivera-Campo, E. (2022). The Crossing Number of Twisted Graphs. Graphs and Combinatorics38(5), 134.

Figueroa, A. P., Montellano-Ballesteros, J. J., & Olsen, M. (2020). Conditions on the regularity of balanced $ c $-partite tournaments for the existence of strong subtournaments with high minimum degree. Australasian Journal of Combinatorics 82(3)  353–-365.

Figueroa, A. P., & Fresán-Figueroa, J. (2020). The biplanar tree graph. Boletín de la Sociedad Matemática Mexicana26(3), 795-806.

https://journals.scholarsportal.info/details/1405213x/v26i0003/795_tbtg.xml

Figueroa, A. P., Possani, E., & Trigueros, M. (2018). Matrix multiplication and transformations: an APOS approach. The Journal of Mathematical Behavior,Vol. 52, pp. 77-91.

https://doi.org/10.1016/j.jmathb.2017.11.002

Figueroa, A. P., Fresán-Figueroa, J., & Rivera-Campo, E. (2017). On the perfect matching graph defined by a set of cycles. Boletín de la Sociedad Matemática Mexicana23, 549-556.

Figueroa, A. P., Hernández-Cruz, C., & Olsen, M. (2017). The minimum feedback arc set problem and the acyclic disconnection for graphs. Discrete Mathematics340(7), 1514-1521.

Figueroa, A. P., Montellano-Ballesteros, J. J., & Olsen, M. (2016). Strong subtournaments and cycles of multipartite tournaments. Discrete Mathematics339(11), 2793-2803.

Figueroa, A. P., & Rivera-Campo, E. (2015). A counterexample to a result on the tree graph of a graph. Australasian Journal of Combinatorics 63(3), 368-373. 

http://ajc.maths.uq.edu.au/pdf/63/ajc_v63_p368.pdf

Figueroa, A. P., Olsen, M., & Zuazua, R. (2015). On the vertices of a 3-partite tournament not in triangles. Discrete Mathematics338(11), 1982-1988.

doi:10.1016/j.disc.2015.05.004

Figueroa, A. P., & Olsen, M. (2012). The tight bound on the number of. AUSTRALASIAN JOURNAL OF COMBINATORICS52, 209-214.

Figueroa, A. P., & Rivera-Campo, E. (2012). The basis graph of a bicolored matroid. Discrete Applied Mathematics160(18), 2694-2697.

Figueroa, A. P., Llano, B., Olsen, M., & Rivera-Campo, E. (2012). On the acyclic disconnection of multipartite tournaments. Discrete Applied Mathematics160(10-11), 1524-1531.

Figueroa, A. P., & Llano, B. (2010). An infinite family of self-diclique digraphs. Applied mathematics letters23(5), 630-632.

Figueroa, A. P., Llano, B., & Zuazua, R. (2010). The number of C3⃗-free vertices on 3-partite tournaments. Discrete mathematics310(19), 2482-2488.

Figueroa, A. P. (2009). A note on a theorem of Perles concerning non-crossing paths in convex geometric graphs. Computational Geometry42(1), 90-91.

Figueroa, A. P., & Rivera-Campo, E. (2009). On the basis graph of a bicolored matroid. Electronic Notes in Discrete Mathematics35, 269-273.

Figueroa, A.P, & Rivera-Campo, E. (2008). On the tree graph of a connected graph. Discussiones Mathematicae Graph Theory28(3), 501-510.


García García César Luis 

Bosch, C., García, C. L., Gilsdorf, T. E., Wulschner, C. G., & Vera, R. (2021). Eventually constant intertwining linear maps between complete locally convex spaces. Italian Journal of Pure and Applied Mathematics, (46), 147–163

Bosch, C., García, C. L., Gilsdorf, T., Gómez-Wulschner, C., & Vera, R. (2017). Fixed points of set-valued maps in locally complete spaces. Fixed Point Theory and Applications2017, 1-11.

Bosch, C., Cabo, M., Charalambous, N., García, C. L., Gómez-Wulschner, C., Pastor, G., & Reyes, A. (2016). Finding the Middle Ground Bisectors in p-Geometry. Journal for Geometry and Graphics20(1), 023-032

Bosch, C., García, C. L., Garibay-Bonales, F., Gómez-Wulschner, C., & Vera, R. (2015). Ekeland's variational principle and critical points of dynamical systems in locally complete spaces. Annals of Functional Analysis6(4), 107-113. ISNN: 2008-8752

http://projecteuclid.org/euclid.afa/1435764005

Bosch, C., & Garcia, A. (2010). Local completeness and Pareto optimization. Nonlinear Analysis: Theory, Methods & Applications73(4), 1098-1100.

Bosch, C., Garcia, A., & Garcia, C. L. (2007). An extension of Ekeland's variational principle to locally complete spaces. Journal of mathematical analysis and applications328(1), 106-108.

doi:10.1016/j.jmaa.2006.05.012

Bosch, C., Garcıa, C. L., Garybay-Bonales, F., Gómez-Wulschner, C., & Vera, R. (2006). Locally Complete Spaces, Regularity, and the Banach Disk Closure Property. In International Mathematical Forum (Vol. 1, No. 8, pp. 351-357).

http://www.m-hikari.com/imf-password/5-8-2006/boschIMF5-8-2006.pdf

Lomelí, H. E., & García, C. L. (2006). Variations on a Theorem of Korovkin. The American Mathematical Monthly113(8), 744-750.

http://www.ingentaconnect.com/content/maa/amm/2006/00000113/00000008/art00006

García, C.L. & Johnson W.B. (2003). Power Type Uniform Convexity of X via p-Asymptotic Uniform Convexity of Lr(X). Houston Journal of Mathematics, 29(2), pp. 395-402.

http://math.uh.edu/~hjm/Vol29-2.html

Casazza, P., García, C., & Johnson, W. (2001). An example of an asymptotically Hilbertian space which fails the approximation property. Proceedings of the American Mathematical Society129(10), 3017-3023.


Gómez Wulschner Claudia 

Bosch, C., García, C. L., Gilsdorf, T. E., Wulschner, C. G., & Vera, R. (2021). Eventually constant intertwining linear maps between complete locally convex spaces. Italian Journal of Pure and Applied Mathematics, (46), 147–163

Bosch, C., García, C. L., Gilsdorf, T., Gómez-Wulschner, C., & Vera, R. (2017). Fixed points of set-valued maps in locally complete spaces. Fixed Point Theory and Applications2017, 1-11.

Bosch, C., Cabo, M., Charalambous, N., García, C. L., Gómez-Wulschner, C., Pastor, G., & Reyes, A. (2016). Finding the Middle Ground Bisectors in p-Geometry. Journal for Geometry and Graphics20(1), 023-032

Bosch, C., García, C. L., Garibay-Bonales, F., Gómez-Wulschner, C., & Vera, R. (2015). Ekeland's variational principle and critical points of dynamical systems in locally complete spaces. Annals of Functional Analysis6(4), 107-113. ISNN: 2008-8752

http://projecteuclid.org/euclid.afa/1435764005

Bosch, C., Gilsdorf, T. E., & Gómez-Wulschner, C. (2011). Mackey first countability and docile locally convex spaces. Acta Mathematica Sinica, English Series27(4), 737-740

doi:10.1007/s10114-011-8540-1

Bosch, C., Garcıa, A., Gómez-Wulschner, C., & Hernández-Linares, S. (2010). Equivalents to Ekeland’s variational principle in locally complete spaces. Sci. Math. Japn72, 283-287

http://www.jams.or.jp/notice/scmjol/2010.html

Bosch, C., Garcıa, C. L., Garybay-Bonales, F., Gómez-Wulschner, C., & Vera, R. (2006). Locally Complete Spaces, Regularity, and the Banach Disk Closure Property. In International Mathematical Forum (Vol. 1, No. 8, pp. 351-357).

http://www.m-hikari.com/imf-password/5-8-2006/boschIMF5-8-2006.pdf

Gomez-Wulschner, C., & Kučera, J. (2004). Sequentially complete inductive limits and regularity. Czechoslovak Mathematical Journal54(3), 697-699.

doi:10.1007/s10587-004-6418-4

Bosch, C., Gilsdorf, T. ,and Gómez-Wulschner C., and Vera R. (2002). Local Completeness of Ip(E),1<=p< infinity. International Journal of Mathematics and Mathematical Sciences (Vol.31, No. 11, pp. 651-657).

doi:10.1155/S0161171202109033

Gómez, C., & Kučera, J. (2000). Sequential completeness of inductive limits. International Journal of Mathematics and Mathematical Sciences24(6), 419-421.

doi:10.1155/S0161171200003744


 

Madriz Mendoza Maira

Acosta,G., Alberto-Domínguez, J.C. and Mendoza-Madriz M.(2018). Brown spaces and the Golomb topology.Open Access Journal of  Mathematical and Theoretical Physics, 1(6), 242-247.


 

Martínez Avendaño Rubén

Itzá-Ortiz, B. A., Martínez-Avendaño, R. A., Nopal-Coello, V., & Villarroel-Flores, R. (2022). Sobre la igualdad entre la envolvente convexa de dos círculos con la unión de cierta familia de elipses. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI10(Especial), 52-58.

https://doi.org/10.29057/icbi.v10iEspecial.8444

Itzá-Ortiz, B. A., & Martínez-Avendaño, R. A. (2022). Matrices similar to centrosymmetric matrices. J. Korean Math. Soc. 59  no. 5, 997–1013.

https://doi.org/10.4134/JKMS.j220108

Itzá-Ortiz, B. A., Martínez-Avendaño, R. A., & Nakazato, H. (2022). The numerical range of a periodic tridiagonal operator reduces to the numerical range of a finite matrix. Journal of Mathematical Analysis and Applications506(2), 125713.

https://doi.org/10.1016/j.jmaa.2021.125713

Itzá-Ortiz, B. A., & Martínez-Avendaño, R. A. (2021). The numerical range of a class of periodic tridiagonal operators. Linear and Multilinear Algebra69(5), 786-806.

https://doi.org/10.1080/03081087.2019.1706438

Itzá-Ortiz, B. A., Martínez-Avendaño, R. A., & Nakazato, H. (2021). The numerical range of some periodic tridiagonal operators is the convex hull of the numerical ranges of two finite matrices. Linear and Multilinear Algebra69(15), 2830-2849.

https://doi.org/10.1080/03081087.2021.1957760

Agrawal, A., Berge, A., Colbert-Pollack, S., Martínez-Avendaño, R. A., & Sliheet, E. (2020). Norms, kernels and eigenvalues of some infinite graphs.Oper.Matrices, 14(1),221-250. 

https://doi.org/10.7153/oam-2020-14-17



Martínez-Avendaño, R. A., & Rivera-Guasco, E. (2020). The Forward and Backward Shift on the Lipschitz Space of a Tree. Integral Equations and Operator Theory92(1), 1-34.

https://doi.org/10.1007/s00020-019-2558-7



Itzá-Ortiz, B. A., & Martínez-Avendaño, R. A. (2020). The numerical range of a class of periodic tridiagonal operators. Linear and Multilinear Algebra, 1-21.

https://doi.org/10.1080/03081087.2019.1706438

Allen, R. F., Colonna, F., Martínez-Avendaño, R. A., & Pons, M. A. (2019). Hypercyclicity of composition operators on discrete weighted Banach spaces. Mediterranean Journal of Mathematics16, 1-20.

https://doi.org/10.1007/s00009-019-1394-y


Morais Joao 

Zayed, H. M., Mehrez, K., & Morais, J. (2024). Monotonicity patterns and functional inequalities for modified Lommel functions of the first kind. Analysis and Mathematical Physics, 14(5), 103.

https://link.springer.com/article/10.1007/s13324-024-00962-7?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=nonoa_20240817&utm_content=10.1007%2Fs13324-024-00962-7

Ashtab, Z., Morais, J. & Michael Porter, R. (2024). Harmonic and Monogenic Functions on Toroidal Domains. J Geom Anal 34, 248 .
https://doi.org/10.1007/s12220-024-01692-9

Ferreira, M., & Morais, J. (2024). Quaternion Hyperbolic Fourier Transforms and Uncertainty Principles. Complex Analysis and Operator Theory18(2), 16.

https://doi.org/10.1007/s11785-023-01451-8

Morais, J., & Porter, R. M. (2023). Quaternionic metamonogenic functions in the unit disk. Boletín de la Sociedad Matemática Mexicana.29 (Suppl 1), 100

https://doi.org/10.1007/s40590-023-00557-5

Ashtab, Z., Morais, J., & Porter, R. M. (2023). Fourier method for the Neumann problem on a torus. Analysis and Mathematical Physics13(5) 78

Morais, J., & Ferreira, M. (2023). Hyperbolic linear canonical transforms of quaternion signals and uncertainty. Applied Mathematics and Computation450, 127971.

Morais, J. (2023). Orthogonal Harmonic and Quaternionic Monogenic Functions in the Exterior of a Spheroid. Complex Analysis and Operator Theory17(5), 71.

Morais, J., & Porter, R. M. (2023). Reduced-quaternionic Mathieu functions, time-dependent Moisil-Teodorescu operators, and the imaginary-time wave equation. Applied Mathematics and Computation438, 127588.

Álvarez, C., Morais, J., & Porter, R. M. (2022). Reduced-quaternion inframonogenic functions on the ball

https://doi.org/10.1002/mma.9600

Zayed H., Bulboaca T. &  Morais J. (2022) The geometric characterizations for a combination of generalized Struve functions. Comput. Methods Funct. Theory, Vol. 22, pp. 699–714 (2022).

https://doi.org/10.1007/s40315-021-00421-5

Morais, J., Zayed, H. M., & Srivastava, R. (2021). Third‐order differential subordinations for multivalent functions in the theory of source‐sink dynamics. Mathematical Methods in the Applied Sciences44(14), 11269-11287.

Morais, J., & Zayed, H. M. (2021). Applications of differential subordination and superordination theorems to fluid mechanics involving a fractional higher-order integral operator. Alexandria Engineering Journal60(4), 3901-3914.

García-Ancona, R., Morais, J., & Porter, R. M. (2020). Relations among spheroidal and spherical harmonics. Applied Mathematics and Computation384, 125147.

https://doi.org/10.1016/j.amc.2020.125147

https://www.sciencedirect.com/science/article/abs/pii/S0096300320301168

Abdalla, M., Abul‐Ez, M., & Morais, J. (2018). On the construction of generalized monogenic Bessel polynomials. Mathematical Methods in the Applied Sciences41(18), 9335-9348.

https://onlinelibrary.wiley.com/doi/full/10.1002/mma.5274

García‐Ancona, R., Morais, J., & Porter, R. M. (2018). Contragenic functions on spheroidal domains. Mathematical Methods in the Applied Sciences41(7), 2575-2589.

https://onlinelibrary.wiley.com/doi/full/10.1002/mma.4759

Kou, K. I., Liu, M. S., Morais, J. P., & Zou, C. (2017). Envelope detection using generalized analytic signal in 2D QLCT domains. Multidimensional Systems and Signal Processing, An International Journal 28(4), 1343-1366.

https://link.springer.com/article/10.1007/s11045-016-0410-7

Zou, C., Kou, K. I., & Morais, J. (2016). Prolate spheroidal wave functions associated with the quaternionic Fourier transform. Publicado online en Mathematical Methods in the Applied Sciences. DOI: 10.1002/mma.4439.

https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.4439

Morais, J., & Kou, K. I. (2016). Constructing prolate spheroidal quaternion wave functions on the sphere. Mathematical Methods in the Applied Sciences39(14), 3961-3978.

https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.3838

Morais, J., Le, H. T., & Pérez‐de la Rosa, M. A. (2016). Quaternionic Spherical Wave Functions. Mathematical Methods in the Applied Sciences39(18), 5118-5130.5.

https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.3889

Kou, K. I., Ou, J., & Morais, J. (2016). Uncertainty principles associated with quaternionic linear canonical transforms. Mathematical Methods in the Applied Sciences39(10), 2722-2736

https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.3724

Morais, J., Nguyen, H. M., & Kou, K. I. (2016). On 3D orthogonal prolate spheroidal monogenics. Mathematical Methods in the Applied Sciences39(4), 635-648.

https://onlinelibrary.wiley.com/doi/full/10.1002/mma.3505

Luna-Elizarrarás, M., Morais, J., Pérez-de la Rosa, M., & Shapiro, M. (2016). On a version of quaternionic function theory related to Chebyshev polynomials and modified Sturm-Liouville operators. Quarterly of Applied Mathematics74(1), 165-187 

http://www.ams.org/journals/qam/2016-74-01/S0033-569X-2015-01412-6/

Morais, J., Pérez-de la Rosa, M. A., & Kou, K. I. (2015). Computational geometric and boundary value properties of oblate spheroidal quaternionic wave functions. Wave Motion57, 112-128

https://www.sciencedirect.com/science/article/pii/S0165212515000499

Morais, J., & Pérez‐de la Rosa, M. A. (2015). Towards a quaternionic function theory linked with the Lamé's wave functions. Mathematical Methods in the Applied Sciences38(17), 4365-4387.

https://onlinelibrary.wiley.com/doi/full/10.1002/mma.3376

 


Mota Gaytán Miguel Ángel 

Dobrinen, N., Krueger, J., Marun, P., Mota, M. A., & Zapletal, J. (2024). On the Consistency Strength of MM ($\omega_1 $);Proc. Amer. Math. Soc. ,152 , 2229-2237

https://doi.org/10.1090/proc/16718

 

Asperó,D. & Mota, M.A (2023). Few new reals, Journal of Mathematical Logic, 2350009, 35 pages

https://doi.org/10.1142/S0219061323500095

Asperó, D., & Mota, M. A. (2017). Measuring club-sequences together with the continuum large. The Journal of Symbolic Logic82(3), 1066-1079.

DOI: 10.1017/jsl.2017.4

Asperó, D., & Mota, M. A. (2016). Separating club-guessing principles in the presence of fat forcing axioms. Annals of Pure and Applied Logic167(3), 284-308

doi:10.1016/j.apal.2015.12.003

Krueger, J., & Mota, M. A. (2015). Coherent adequate forcing and preserving CH. Journal of Mathematical Logic15(02), 1550005.

doi:10.1142/S0219061315500051

 

 

Núñez López Mayra

Chacón-Acosta G, Núñez-López M.(2024) Entropy Production in Reaction–Diffusion Systems Confined in Narrow Channels. Entropy. 26(6):463.
https://doi.org/10.3390/e26060463

De la Mora Tostado, S., Hernández-Vargas, E. A., & Núñez-López, M. (2024). Modeling human trafficking and the limits of dismantling strategies. Social Network Analysis and Mining, 14(1), 84.

https://link.springer.com/article/10.1007/s13278-024-01208-x

Hernández-López, E.,  Núñez-López, M. & Capistrán M.  (2023).  Stochastic dynamics between the immune system and cancer cells with Allee effect and immunotherapy.  Journal of Biological Systems 1-22

https://doi.org/10.1142/S0218339023500420

Núñez-López, M., Zepeda-Tello, R., Castañeda, P., Skolnick, S., Meza, R., & Hernández-Ávila, M. (2023). Implementation of mitigation measures and modeling of in-hospital dynamics depending on the COVID-19 infection status. In Mathematical Modelling, Simulations, and AI for Emergent Pandemic Diseases (pp. 175-198). Academic Press.

https://www.sciencedirect.com/science/article/pii/B9780323950640000038

Núñez-López, M., & Chacón-Acosta, G. (2022). Influencia de la curvatura en la formación de patrones: el mecanismo de Turing en el círculo. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI10(Especial), 42-51.

Núñez-López, M., & Chacón-Acosta, G. (2022). Pattern formation in a predator–prey system with a finite interaction range in a channel-like region using the Fick–Jacobs diffusion approach. Physica D: Nonlinear Phenomena, 133194.

https://doi.org/10.1016/j.physd.2022.133194

Hernández-López, E., & Núñez-López, M. (2021). Bifurcations in a Cancer and Immune Model with Allee Effect. International Journal of Bifurcation and Chaos31(13), 2130039.

https://doi.org/10.1142/S0218127421300391

Núñez-López, M., Hernández-López, E., & Delgado, J. (2021). Stochastic Simulation on a Minimal Model of Cancer Immunoediting Theory. International Journal of Bifurcation and Chaos31(06), 2150088.

https://doi.org/10.1142/S0218127421500887

Núñez-López, M., Ramos, L. A., & Velasco-Hernández, J. X. (2021). Migration rate estimation in an epidemic network. Applied mathematical modelling89 (2), 1949-1964.

https://doi.org/10.1016/j.apm.2020.08.025

Chacón-Acosta, G., Núñez-López, M., & Pineda, I. (2020). Turing instability conditions in confined systems with an effective position-dependent diffusion coefficient. The Journal of Chemical Physics, 152(2), 024101.

https://aip.scitation.org/doi/full/10.1063/1.5128510

Limón-Hernández, D., Rayas-Amor, A. A., García-Martínez, A., Estrada-Flores, J. G., López, M. N., Monterrosa, R. G. C., & Morales-Almaráz, E. (2019). Chemical composition, in vitro gas production, methane production and fatty acid profile of canola silage (Brassica napus) with four levels of molasses. Tropical animal health and production, 51 (6), 1579-1584.

https://link.springer.com/article/10.1007/s11250-019-01849-7

Herrera-Hernández, E. C., Aguilar-Madera, C. G., Ocampo-Perez, R., Espinosa-Paredes, G., & Núñez-López, M. (2019). Fractal continuum model for the adsorption-diffusion process. Chemical Engineering Science197, 98-108.

https://www.sciencedirect.com/science/article/pii/S0009250918308388

Capistrán, M. A., Núñez‐López, M., & Rempala, G. A. (2018). Extracellular dynamics of early HIV infection. Mathematical Methods in the Applied Sciences41(18), 8859-8870.

https://onlinelibrary.wiley.com/doi/full/10.1002/mma.5237


Pérez-Chavela Ernesto 

Fujiwara, T., & Pérez-Chavela, E. (2023). Three-Body Relative Equilibria on. Regular and Chaotic Dynamics28(4), 690-706.

Hernández-Garduño, A., Pérez-Chavela, E., & Zhu, S. (2022). Stability of Regular Polygonal Relative Equilibria on S 2. Journal of Nonlinear Science32(5), 73.

Gołȩbiewska, A., Pérez-Chavela, E., Rybicki, S., & Urena, A. J. (2022). Bifurcation of closed orbits from equilibria of Newtonian systems with Coriolis forces. Journal of Differential Equations338, 441-473.

Sánchez-Cerritos, J. M., & Pérez-Chavela, E. (2022). Hyperbolic regularization of the restricted three–body problem on curved spaces. Analysis and Mathematical Physics12(1), 23.

Bengochea, A., Garcia-Chung, A., & Pérez-Chavela, E. (2022). Zero–Hopf bifurcations in Yu–Wang type systems. The European Physical Journal Special Topics231(3), 413-421.

Bengochea, A., García-Azpeitia, C., Pérez-Chavela, E., & Roldan, P. (2022). Continuation of relative equilibria in the n–body problem to spaces of constant curvature. Journal of Differential Equations307, 137-159.

Alhowaity, S., Pérez-Chavela, E., & Sánchez-Cerritos, J. M. (2021). The curved symmetric 2–and 3–center problem on constant negative surfaces. Communications on Pure & Applied Analysis20(9).

Bengochea, A., Galán-Vioque, J., & Pérez-Chavela, E. (2021). Families of Symmetric Exchange Orbits in the Planar (1+ 2n)(1+ 2 n)-Body Problem. Qualitative theory of dynamical systems20, 1-24.

Bengochea, A., Hernández-Garduño, A., & Pérez-Chavela, E. (2021). New families of periodic orbits in the 4-body problem emanating from a kite configuration. Applied Mathematics and Computation398, 125961.

Kowalczyk, M., Pérez-Chavela, E., & Rybicki, S. (2020). Symmetric Lyapunov center theorem for orbit with nontrivial isotropy group.

Pérez-Chavela, E., Santoprete, M., & Tamayo, C. (2020). Bifurcation of Relative Equilibria for Vortices and General Homogeneous Potentials. Qualitative Theory of Dynamical Systems19(1), 1-19.

https://www.x-mol.com/paper/1255939727556501504

Pérez-Chavela, E., & Sánchez-Cerritos, J. M. (2020). Relative equilibria for the positive curved n–body problem. Communications in Nonlinear Science and Numerical Simulation82, 104994.

https://www.sciencedirect.com/science/article/abs/pii/S1007570419303132

Corbera, M., Cors, J. M., Llibre, J., & Pérez-Chavela, E. (2019). Trapezoid central configurations. Applied Mathematics and Computation346, 127-142.

https://doi.org/10.1016/j.amc.2018.10.066

Pérez-Chavela, E., & Sánchez-Cerritos, J. M. (2019). Regularization of the restricted $(n+ 1) $-body problem on curved spaces. Astrophysics and Space Science, 364, 170.

https://doi.org/10.1007/s10509-019-3655-4.  

Pérez-Chavela, E., & Sánchez-Cerritos, J. M. (2019). Hyperbolic relative equilibria for the negative curved n–body problem. Communications in Nonlinear Science and Numerical Simulation, 67, 460-479. (Nota: disponible en línea desde julio 2018)

https://doi.org/10.1016/j.cnsns.2018.07.022

 

Andrade, J., Pérez-Chavela, E., & Vidal, C. (2018). Regularization of the Circular Restricted Three Body Problem on Surfaces of Constant Curvature. Journal of Dynamics and Differential Equations, 30(4),1607-1626.

 https://doi.org/10.1007/s10884-017-9619-x

Perez-Chavela, E., & Manuel Sanchez-Cerritos, J. (2018). Euler-type Relative Equilibria and their Stability in Spaces of Constant Curvature. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 70(2), 426-450.

http://dx.doi.org/10.4153/CJM-2017-002-7

 

Pérez-Chavela, E., Rybicki, S., & Strzelecki, D. (2018). Symmetric Liapunov center theorem for minimal orbit. Journal of Differential Equations, 265(3), 752-778.

https://doi.org/10.1016/j.jde.2018.03.009

 

Andrade, J., Pérez-Chavela, E., & Vidal, C. (2018). The restricted three body problem on surfaces of constant curvature. Journal of Differential Equations,265 (9), 4486-4529.

https://doi.org/10.1016/j.jde.2018.06.007

 

Alhowaity, S., Diacu, F., & Pérez-Chavela, E. (2018). Relative Equilibria in Curved Restricted 4-body Problems. Canadian Mathematical Bulletin61(4), 673-687.

https://dx.doi.org/10.4153/CMB-2018-019-9

 

Pérez-Chavela, E., Sánchez Cerritos, J.M. (2018).Euler-type relative equilibria in spaces of constant curvature and their stability. Canadian Journal of Mathematics,  No. 2, 426-450

http://dx.doi.org/10.4153/CJM-2017-002-7

Pérez-Chavela, E., Rybicki, S., & Strzelecki, D. (2017). Symmetric Liapunov center theorem. Calculus of Variations and Partial Differential Equations56(2), 26.

DOI: 10.1007/s00526-017-1120-1

Andrade, J., Dávila, N., Pérez-Chavela, E., & Vidal, C. (2017). Dynamics and regularization of the kepler problem on surfaces of constant curvature. Canad. J. Math69(5), 961-991.

http://dx.doi.org/10.4153/CJM-2016-014-5

Franco-Pérez, L., Gidea, M., Levi, M., & Pérez-Chavela, E. (2016). Stability interchanges in a curved Sitnikov problem. Nonlinearity29(3), 1056-1079.

http://dx.doi.org/10.1088/0951-7715/29/3/1056

García-Naranjo, L. C., Marrero, J. C., Pérez-Chavela, E., & Rodríguez-Olmos, M. (2016). Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2. Journal of Differential Equations260(7), 6375-6404.

https://arxiv.org/abs/1505.01452v2

Pérez-Chavela, E., & Tamayo, C. (2016). Relative equilibria in the 4-vortex problem bifurcating from an equilateral triangle configuration. Appl. Math. Nonlinear Sci1(1), 301-310.

doi:10.21042/amns.2016.1.00025

Franco-Pérez, L., & Pérez-Chavela, E. (2016). The symmetric elliptic and hyperbolic restricted 3-body problem on the unit circle. Journal of Geometry and Physics99, 28-41.

http://dx.doi.org/10.1016/j.geomphys.2015.09.009

Pérez-Chavela, E., Santoprete, M., & Tamayo, C. (2015). Symmetric relative equilibria in the four-vortex problem with three equal vorticities. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22  no. 3, 189–209. ISSN: 1201-3390

arXiv:1407.7151v1 


Possani Espinosa Edgar 

Cabo, M., & Possani, E. (2024). Determining inventory, purchasing and cutting policies to manage imperfect and perishable raw material. International Journal of Management Science and Engineering Management, 1-13.

https://doi.org/10.1080/17509653.2024.2377155

Possani, E., & Castillo, E. (2021). Optimizing the inventory and routing decisions in a bike-sharing system: A linear programming and stochastic approach. Case Studies on Transport Policy9(4), 1495-1502.

https://doi.org/10.1016/j.cstp.2021.07.006

Ríos-Solís, Y. Á., Ibarra-Rojas, O. J., Cabo, M., & Possani, E. (2020). A heuristic based on mathematical programming for a lot-sizing and scheduling problem in mold-injection production. European Journal of Operational Research284(3), 861-873.

https://doi.org/10.1016/j.ejor.2020.01.016

Archibald, T. W., & Possani, E. (2019). Investment and operational decisions for start-up companies: a game theory and Markov decision process approach. Annals of Operations Research, 1-14.

https://doi.org/10.1007/s10479-019-03426-5

Figueroa, A. P., Possani, E., & Trigueros, M. (2018). Matrix multiplication and transformations: an APOS approach. The Journal of Mathematical Behavior,Vol. 52, pp. 77-91.

https://doi.org/10.1016/j.jmathb.2017.11.002

Cabo, M., González-Velarde, J. L., Possani, E., & Solís, Y. Á. R. (2018). Bi-objective scheduling on a restricted batching machine. Computers & Operations Research, Vol 100, pp. 201-210.

https://doi.org/10.1016/j.cor.2018.07.004

Sandoval, I., & Possani, E. (2016). An analysis of different representations for vectors and planes in R3Educational Studies in Mathematics92(1), 109-127..

doi10.1007/s10649-015-9675-2

Archibald, T. W., Possani, E., & Thomas, L. C. (2015). Managing inventory and production capacity in start-up firms. Journal of the Operational Research Society66(10), 1624-1634.

http://dx.doi.org/10.1057/jors.2014.110

Cabo, M., & Possani, E. (2015). Considerations on Applying Cross Entropy Methods to the Vehicle Routing Problem. International Journal of Combinatorial Optimization Problems and Informatics6(3), 22. ISSN: 2007-1558.

https://ijcopi.org/index.php/ojs/article/view/49

Cabo, M., Possani, E., Potts, C. N., & Song, X. (2015). Split–merge: Using exponential neighborhood search for scheduling a batching machine. Computers & Operations Research63, 125-135. ISSN 0305-0548

http://dx.doi.org/10.1016/j.cor.2015.04.017

Possani, E.,& Trigueros, M. (2013). Using an economics model for teaching linear algebra. Linear Algebra and its Applications438(4), 1779-1792

doi:10.1016/j.laa.2011.04.009

Cantú, C., & Possani, E. (2012). A Circulation Network Model for the Exchange Rate Arbitrage Problem. Journal of Business & Economics4(1), 30-61.

http://dx.doi.org/10.2139/ssrn.2192185

Glass, C. A., & Possani, E. (2011). Lot streaming multiple jobs in a flow shop. International Journal of Production Research49(9), 2669-2681.

doi:10.1080/00207543.2010.532935

Possani, E., Trigueros, M., Preciado, J. G., & Lozano, M. D. (2010). Use of models in the teaching of linear algebra. Linear Algebra and its Applications432(8), 2125-2140.

doi:10.1016/j.laa.2009.05.004

Archibald, T. W., Thomas, L. C., & Possani, E. (2007). Keep or return? Managing ordering and return policies in start-up companies. European Journal of Operational Research179(1), 97-113.

doi:10.1016/j.ejor.2006.01.044

Possani, E., Thomas, L. C., & Archibald, T. W. (2003). Loans, ordering and shortage costs in start-ups: a dynamic stochastic decision approach. Journal of the Operational Research Society54(5), 539-548

doi:10.1057/palgrave.jors.2601547

Thomas, L. C., Possani, E., & Archibald, T. W. (2003). How useful is commonality? Inventory and production decisions to maximize survival probability in start‐ups. IMA Journal of Management Mathematics14(4), 305-320.

doi:10.1093/imaman/14.4.305


 

Rivera Noriega Jorge

San Martin, L., & Rivera-Noriega, J. (2019). Two Results Relating an $ L^ p $ Regularity Condition and the $ L^ q $ Dirichlet Problem for Parabolic Equations. Communications in Mathematical Analysis22(2), 35-60.

https://projecteuclid.org/euclid.cma/1575428422

Rivera-Noriega, J., & San Martin, L. (2019). An Lq regularity condition that implies the A∞ property of parabolic measure. Indagationes Mathematicae.

https://www.sciencedirect.com/science/article/abs/pii/S001935771830466X

Ocampo-Salgado, H., & Rivera-Noriega, J. (2019). Invertibility of operators on atomic subspaces of $ L^ 1$ and an application to the Neumann problem. Rocky Mountain Journal of Mathematics49(3), 929-944.

https://projecteuclid.org/euclid.rmjm/1563847241


Rumbos Pellicer Beatriz 

Rumbos, B. (2001). Representing subjective orderings of random variables: an extension. Journal of Mathematical Economics36(1), 31-43.

doi:10.1016/S0304-4068(01)00063-5

Rumbos, B., & Auernheimer, L. (2001). Endogenous capital utilization in a neoclassical growth model. Atlantic Economic Journal29(2), 121-134

doi:10.1007/BF02299133

Rumbos B. (1999). A Variable Rate of Capital Utilization and the Averch-Johnson Effect. Pennsylvania Economic Review, 8(1),  52-61.

http://allman.rhon.itam.mx/~rumbos/documentos/AJ.pdf

Rumbos. B., & Auernheimer L. (1998). Remarks on Variable utilization of Capital. Proceedings of the Pennsylvania Economic Association, pp. 204-213

http://allman.rhon.itam.mx/~rumbos/Doc/Remarks.pdf


Trigueros Gaisman María 

Farabello, S. P., & Trigueros, M. (2020). La Transformación de Funciones en el aula de Física. UNIÓN-REVISTA IBEROAMERICANA DE EDUCACIÓN MATEMÁTICA16(58), 25-47.

https://union.fespm.es/index.php/UNION/article/view/82

 

Trigueros, M., Sandoval, I., & Lozano, M. D. (2020). Ways of acting when using technology in the primary school classroom: contingencies and possibilities for learning. ZDM Mathematics Education, 52, 1-13.

https://doi.org/10.1007/s11858-020-01171-9



Figueroa, A. P., Possani, E., & Trigueros, M. (2018). Matrix multiplication and transformations: an APOS approach. The Journal of Mathematical Behavior,Vol. 52, pp. 77-91.

https://doi.org/10.1016/j.jmathb.2017.11.002

Possani, E.,& Trigueros, M. (2013). Using an economics model for teaching linear algebra. Linear Algebra and its Applications438(4), 1779-1792

doi:10.1016/j.laa.2011.04.

Possani, E., Trigueros, M., Preciado, J. G., & Lozano, M. D. (2010). Use of models in the teaching of linear algebra. Linear Algebra and its Applications432(8), 2125-2140.

doi:10.1016/j.laa.2009.05.004

Trigueros, M., Lozano, M. D., & Lage, A. E. (2007). Development and Use of a Computer-Based Interactive Resource for Teaching and Learning Probability in Primary Classrooms. International Journal for Technology in Mathematics Education13(4), 205-211.

http://www.tech.plym.ac.uk/research/mathematics_education/field%20of%20work/IJTME/index.htm

Trigueros, M. (2001). Un Proyecto de enseñanza de la física con tecnología para la escuela secundaria. Revista de investigación y Experiencias Didácticas. Retos de la enseñanza para las Ciencias en el Siglo XXI, Tomo 1, Número Extraordinario, Barcelona, pp. 291-292.

http://www.oei.es/es21.htm

Baker, B., Cooley, L., & Trigueros, M. (2000). A calculus graphing schema. Journal for Research in Mathematics Education, 557-578.

http://my.nctm.org/eresources/article_summary.asp?URI=JRME2000-11-557a&from=B


Vargas García Edith 

Almazaydeh, A. A., Behrisch, M., Vargas-García, E., & Wachtel, A. (2024). Arrow Relations in Lattices of Integer Partitions. International Journal of Approximate Reasoning, 109244.

https://doi.org/10.1016/j.ijar.2024.109244

Behrisch, M., & Vargas-García, E. (2021).Non-embeddability of standard contexts of lattices of integer partitions .Zenodo.
https://doi.org/10.5281/zenodo.5805982

Behrisch, M., & Vargas-García, E. (2021). On a stronger reconstruction notion for monoids and clones. In Forum Mathematicum. De Gruyter.

https://www.degruyter.com/document/doi/10.1515/forum-2020-0205/html

Behrisch,M.,& Vargas-García, E. (2021). Centralising Monoids with Low-Arity Witnesses on a Four-Element Set. Symmetry, 13, 1471. 

https://doi.org/10.3390/sym13081471

Truss, J., & Vargas-García, E. (2021). Reconstructing the topology on monoids and polymorphism clones of reducts of the rationals. Contributions to Discrete Mathematics16(2), 1-22.

https://cdm.ucalgary.ca/issue/view/5269

Behrisch, M., Villarello, A. C., & Vargas-García, E. (2021). Representing partition lattices through FCA.

In: Braud A., Buzmakov A., Hanika T., Le Ber F. (eds) Formal Concept Analysis. ICFCA 2021. Lecture Notes in Computer Science, vol 12733. Springer, Cham.  

http://​https://doi.org/10.1007/978-3-030-77867-5_1

Truss, J. K., & Vargas-Garcia, E. (2021). Interpreting the action of the endomorphism monoid of the rationals.Algebra and Logic, 6064–74

https://doi.org/10.1007/s10469-021-09628-w

Behrisch, M., Vargas-García, E., & Zhuk, D. (2018). The number of clones determined by disjunctions of unary relations. Theory of Computing Systems, 1-16.

https://doi.org/10.1007/s00224-018-9905-y

Behrisch, M., & Vargas-García, E. (2018). Unique inclusions of maximal C-clones in maximal clones. Algebra Univers. 79: 31.

https://doi.org/10.1007/s00012-018-0497-9

https://rdcu.be/L93y


Wachtel Andreas 

Almazaydeh, A. A., Behrisch, M., Vargas-García, E., & Wachtel, A. (2024). Arrow Relations in Lattices of Integer Partitions. International Journal of Approximate Reasoning, 109244.

https://doi.org/10.1016/j.ijar.2024.109244

Barrenechea, G. R., & Wachtel, A. (2019). The inf-sup stability of the lowest order Taylor–Hood pair on affine anisotropic meshes. IMA Journal of Numerical Analysis,1-22.

https://academic.oup.com/imajna/advance-article/doi/10.1093/imanum/drz028/5526934?guestAccessKey=320077c5-d9b4-4dc8-a088-21083f318d43

Barrenechea, G. R., & Wachtel, A. (2018). Stabilised finite element methods for the Oseen problem on anisotropic quadrilateral meshes. ESAIM: Mathematical Modelling and Numerical Analysis52(1), 99-122.

https://doi.org/10.1051/m2an/2017031

 


Zogaib Achar Lorena 

Dufty, J. W., Baskaran, A., & Zogaib, L. (2004). Gaussian kinetic model for granular gases. Physical Review E69(5), 051301, 1-17.

doi:10.1103/PhysRevE.69.051301